PRODUCT DESCRIPTION

The DIMENSION CP-Series units are high-end power supplies in a medium price range without compromising quality, reliability and performance. The CP-Series is part of the DIMENSION power supply family. The most outstanding features of CP10.481 are the high efficiency, advanced inrush current limitation, active PFC and the wide operational temperature range.

The CP-Series includes all the essential basic functions. The devices also offer PowerBoost: Power reserves of 20%, which may even be used continuously at temperatures up to +45°C. Additionally, the CP10 can deliver three times the nominal output current for at least 12ms which helps to trip fuses on faulty output branches.

High immunity to transients and power surges as well as low electromagnetic emission, a DC-OK relay contact and a large international approval package for a variety of applications makes this unit suitable for nearly every situation.

SHORT-FORM DATA

Output voltage DC 48V
Adjustment range 48 – 56V
Nominal Factory setting 48.0V
Output current 5.4-4.6A Up to +60°C ambient
4.0-3.4A At +70°C ambient
PowerBoost 6.0 Derate linearly between +60°C and +70°C (PowerBoost)
Linear decrease to nominal power between +45°C and +60°C
Input voltage AC AC 100-240V ±10%
Mains frequency 50-60Hz ±6%
Input current AC 2.32 / 1.20A At 120 / 230Vac
Power factor 0.99 / 0.98 At 120 / 230Vac
Input voltage DC DC 110-150V ±20%
Input current DC 2.51A At 110Vdc
Reduce output current to 5-4.3A (48-56V) below 93.5Vdc
AC Inrush current 6 / 9A pk At 40°C 120/230Vac
Efficiency 93.8 / 95.5% At 120 / 230Vac
Losses 17.2 / 12.3W At 120 / 230Vac
Hold-up time 34 / 34ms At 120 / 230Vac
Temperature range -25°C to +70°C
Size (w x h x d) 39x124x117mm Without DIN rail
Weight 600g

ORDER NUMBERS

Power Supply CP10.481
Accessory ZM10.WALL Wall/panel mount bracket
ZM12.SIDE Side mount bracket

MAIN APPROVALS

For details and the complete approval list, see chapter 20.

UL 508
UL 60950-1
ATEX

IECEx
Class I Div 2
Marine

Jan. 2023 / Rev. 1.4 DS-CP10.481-EN
All parameters are specified at 48V, 5.4A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
The information given in this document is correct to the best of our knowledge and experience at the time of publication. If not expressly agreed otherwise, this information does not represent a warranty in the legal sense of the word. As the state of our knowledge and experience is constantly changing, the information in this data sheet is subject to revision. We therefore kindly ask you to always use the latest issue of this document (available under www.pulspower.com).

No part of this document may be reproduced or utilized in any form without our prior permission in writing.

TERMINOLOGY AND ABREVIATIONS

PE and symbol PE is the abbreviation for Protective Earth and has the same meaning as the symbol ⚪.

T.b.d. To be defined, value or description will follow later.

AC 230V A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually ±15%) included.

E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V)

230Vac A figure with the unit (Vac) at the end is a momentary figure without any additional tolerances included.

50Hz vs. 60Hz As long as not otherwise stated, AC 100V and AC 230V parameters are valid at 50Hz mains frequency. AC 120V parameters are valid for 60Hz mains frequency.

May A key word indicating flexibility of choice with no implied preference.

Shall A key word indicating a mandatory requirement.

Should A key word indicating flexibility of choice with a strongly preferred implementation.
1. INTENDED USE

This device is designed for installation in an enclosure and is intended for commercial use, such as in industrial control, process control, monitoring and measurement equipment or the like.

Do not use this device in equipment, where malfunctioning may cause severe personal injury or threaten human life without additional appropriate safety devices, that are suited for the application.

If this device is used in a manner outside of its specification, the protection provided by the device may be impaired.

2. INSTALLATION INSTRUCTION

⚠️ WARNING ⚠️ Risk of electrical shock, fire, personal injury or death.
- Turn power off before working on the device and protect against inadvertent re-powering.
- Do not open, modify or repair the device.
- Use caution to prevent any foreign objects from entering into the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.
- Do not touch during power-on, and immediately after power-off. Hot surface may cause burns.

Obey the following installation instructions:
This device may only be installed and put into operation by qualified personnel.
This device does not contain serviceable parts. The tripping of an internal fuse is caused by an internal defect.
If damage or malfunction should occur during installation or operation, immediately turn power off and send unit to the factory for inspection.

Install device in an enclosure providing protection against electrical, mechanical and fire hazards.
Install the device onto a DIN rail according to EN 60715 with the input terminals on the bottom of the device. Other mounting orientations require a reduction in output current.

Make sure that the wiring is correct by following all local and national codes. Use appropriate copper cables that are designed for a minimum operating temperature of 60°C for ambient temperatures up to +45°C, +75°C for ambient temperatures up to +60°C and 90°C for ambient temperatures up to +70°C.

Ensure that all strands of a stranded wire enter the terminal connection. Use ferrules for wires on the input terminals. Unused screw terminals should be securely tightened.

The device is designed for pollution degree 2 areas in controlled environments. No condensation or frost is allowed.

The enclosure of the device provides a degree of protection of IP20. The enclosure does not provide protection against spilled liquids.

The isolation of the device is designed to withstand impulse voltages of overvoltage category III according to IEC 60664-1.

The device is designed as “Class of Protection I” equipment according to IEC 61140. Do not use without a proper PE (Protective Earth) connection.

The device is suitable to be supplied from TN, TT or IT mains networks. The continuous voltage between the input terminal and the PE potential must not exceed 300Vac.

The input can also be powered from batteries or similar DC sources. The continuous voltage between the supply voltage and the PE/ground potential must not exceed 375Vdc.

A disconnecting means shall be provided for the input of the device.

The device is designed for convection cooling and does not require an external fan.

Do not obstruct airflow and do not cover ventilation grid! The device is designed for altitudes up to 5000m. Above 2000m a reduction in output current and over voltage category is required.

Keep the following minimum installation clearances: 40mm on top, 20mm on the bottom, 5mm left and right side. Increase the 5mm to 15mm in case the adjacent device is a heat source. When the device is permanently loaded with less than 50%, the 5mm can be reduced to zero.

Jan. 2023 / Rev. 1.4 DS-CP10.481-EN
All parameters are specified at 48V, 5.4A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
The device is designed, tested and approved for branch circuits up to 32A (IEC) and 30A (UL) without additional protection device. If an external fuse is utilized, do not use circuit breakers smaller than 6A B- or C-Characteristic to avoid a nuisance tripping of the circuit breaker.

The maximum surrounding air temperature is +70°C. The operational temperature is the same as the ambient or surrounding air temperature and is defined 2cm below the device.

The device is designed to operate in areas between 5% and 95% relative humidity.

Installation Instructions for Hazardous Location Areas
The device is suitable for use in Class I Division 2 Groups A, B, C, D locations and for use in Group II Category 3 (Zone 2) environments.
Classification: ATEX: EPS 15 ATEX 1 101 X, II 3G Ex ec nC IIC T4 Gc / IECEx EPS 15.0079X.

WARNING EXPLOSION HAZARDS!
Use only in standard vertical mounting orientation with the input terminals on bottom of the unit.
Substitution of components may impair suitability for this environment.
Do not disconnect the device or operate the voltage adjustment unless power has been switched off or the area is known to be non-hazardous.
A suitable enclosure must be provided for the end product, which has a minimum protection of IP54 and fulfils the requirements of the EN 60079-0.
3. AC-INPUT

AC input Nom. AC 100-240V Suitable for TN-, TT- and IT mains networks
AC input range Nom. 85-264Vac Below 90Vac, reduce output current according to Fig. 3-5.
264-300Vac For maximal 500ms

Allowed voltage L or N to earth Max. 300Vac Continuous according to IEC 62477-1
Input frequency Nom. 50–60Hz ±6%

Turn-on voltage Typ. 80Vac Steady-state value, see Fig. 3-1
Shut-down voltage Typ. 70Vac Steady-state value, see Fig. 3-1
Typ. 55Vac Dynamic value for maximal 250ms

External input protection See recommendations in chapter 24.3.

AC 100V AC 120V AC 230V
Input current Typ. 2.82A 2.32A 1.20A At 48V, 5.4A, see Fig. 3-3
Power factor*) Typ. 0.99 0.99 0.98 At 48V, 5.4A, see Fig. 3-4
Crest factor**) Typ. 1.5 1.5 1.65 At 48V, 5.4A

Start-up delay Typ. 300ms 290ms 240ms See Fig. 3-2
Rise time Typ. 63ms 63ms 63ms At 48V, 5.4A const. current load,
Typ. 210ms 210ms 210ms 5mF load capacitance, see Fig. 3-2

Turn-on overshoot Max. 200mV 200mV 200mV See Fig. 3-2

External input protection See recommendations in chapter 24.3.

*) The power factor is the ratio of the true (or real) power to the apparent power in an AC circuit.
**) The crest factor is the mathematical ratio of the peak value to RMS value of the input current waveform.

Fig. 3-1 Input voltage range
Fig. 3-2 Turn-on behavior, definitions

Fig. 3-3 Input current vs. output current at 48V output voltage
Fig. 3-4 Power factor vs. output current at 48V output voltage

Jan. 2023 / Rev. 1.4 DS-CP10.481-EN
All parameters are specified at 48V, 5.4A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
4. DC-INPUT

DC input

<table>
<thead>
<tr>
<th>Nom. DC 110-150V</th>
<th>±20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC input range</td>
<td>88-180Vdc</td>
</tr>
<tr>
<td>DC input current</td>
<td>Typ. 2.51A</td>
</tr>
<tr>
<td>Allowed Voltage L/N to Earth</td>
<td>Max. 375Vdc</td>
</tr>
<tr>
<td>Turn-on voltage</td>
<td>Typ. 80Vdc</td>
</tr>
<tr>
<td>Shut-down voltage</td>
<td>Typ. 70Vdc</td>
</tr>
<tr>
<td></td>
<td>Typ. 55Vdc</td>
</tr>
</tbody>
</table>

Instructions for DC use:

a) Use a battery or a similar DC source. A supply from the intermediate DC-bus of a frequency converter is not recommended and can cause a malfunction or damage the unit.

b) Connect +pole to L and –pole to N.

c) Connect the PE terminal to an earth wire or to the machine ground.

Fig. 4-1 Wiring for DC Input

Fig. 4-2 Derating requirements

Jan. 2023 / Rev. 1.4 DS-CP10.481-EN

All parameters are specified at 48V, 5.4A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
5. **Input Inrush Current**

An active inrush limitation circuit (NTCs, which are bypassed by a relay contact) limits the input inrush current after turn-on of the input voltage.

The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on.

<table>
<thead>
<tr>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inrush current</td>
<td>Max. 11A<sub>peak</sub></td>
<td>7A<sub>peak</sub></td>
</tr>
<tr>
<td>Typ. 9A<sub>peak</sub></td>
<td>6A<sub>peak</sub></td>
<td>6A<sub>peak</sub></td>
</tr>
<tr>
<td>Inrush energy</td>
<td>Max. 0.1A²s</td>
<td>0.1A²s</td>
</tr>
</tbody>
</table>

At 40°C, cold start

Fig. 5-1 Typical turn-on behavior at nominal load, 120Vac input and 25°C ambient

Fig. 5-2 Typical turn-on behavior at nominal load, 230Vac input and 25°C ambient
6. OUTPUT

<table>
<thead>
<tr>
<th>Output voltage</th>
<th>Nom. 48V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment range</td>
<td>Min. 48V to 56V</td>
</tr>
<tr>
<td></td>
<td>Max. 58.0V</td>
</tr>
<tr>
<td>Factory settings</td>
<td>Typ. 48.0V</td>
</tr>
<tr>
<td></td>
<td>±0.2%, at full load and cold unit</td>
</tr>
<tr>
<td>Line regulation</td>
<td>Max. 10mV</td>
</tr>
<tr>
<td>Load regulation</td>
<td>Max. 50mV</td>
</tr>
<tr>
<td>Ripple and noise voltage</td>
<td>Max. 50mVpp</td>
</tr>
<tr>
<td>Output current</td>
<td>Nom. 5.4A</td>
</tr>
<tr>
<td></td>
<td>At 48V and up to 60°C ambient temperature, see Fig. 6-1</td>
</tr>
<tr>
<td></td>
<td>Nom. 4.0A</td>
</tr>
<tr>
<td></td>
<td>At 48V and 70°C ambient temperature, see Fig. 16-1</td>
</tr>
<tr>
<td></td>
<td>Nom. 4.6A</td>
</tr>
<tr>
<td></td>
<td>At 56V and up to 60°C ambient temperature, see Fig. 6-1</td>
</tr>
<tr>
<td></td>
<td>Nom. 3.4A</td>
</tr>
<tr>
<td></td>
<td>At 56V and 70°C ambient temperature, see Fig. 16-1</td>
</tr>
<tr>
<td>PowerBoost1)</td>
<td>Nom. 6.0A</td>
</tr>
<tr>
<td></td>
<td>At 48V and up to 45°C ambient temperature, see Fig. 16-1</td>
</tr>
<tr>
<td></td>
<td>Nom. 5.2A</td>
</tr>
<tr>
<td></td>
<td>At 56V and up to 45°C ambient temperature, see Fig. 16-1</td>
</tr>
<tr>
<td>PowerBoost decreases linearly to nominal power between +45°C and +60°C, see chapter 16</td>
<td></td>
</tr>
<tr>
<td>Fuse breaking current</td>
<td>Typ. 15A</td>
</tr>
<tr>
<td></td>
<td>For minimal 12ms once every five seconds, see Fig. 6-2. The output voltage stays above 40V. See chapter 24.1 for more peak current measurements. For AC 100V mains, the pulse length is shorter than 12ms.</td>
</tr>
<tr>
<td>Overload behavior</td>
<td>Continuous current</td>
</tr>
<tr>
<td></td>
<td>HiccupPLUS mode2)</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>Min. 6.3A3)</td>
</tr>
<tr>
<td></td>
<td>Load impedance <90mOhm, see Fig. 6-3</td>
</tr>
<tr>
<td></td>
<td>Max. 7.7A3)</td>
</tr>
<tr>
<td></td>
<td>Load impedance <90mOhm, see Fig. 6-3</td>
</tr>
<tr>
<td></td>
<td>Max. 2.2A</td>
</tr>
<tr>
<td></td>
<td>Average (R.M.S.) current, load impedance 50mOhm, see Fig. 6-3</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>Typ. 960µF</td>
</tr>
<tr>
<td></td>
<td>Included inside the power supply</td>
</tr>
</tbody>
</table>

1) **PowerBoost**
 This power/current is continuously allowed up to an ambient temperature of +45°C. Above +45°C, do not use this power/current longer than a duty cycle of 10% and/or not longer than 1 minute every 10 minutes.

2) **HiccupPLUS Mode**
 At heavy overloads (when output voltage falls below 26V), the power supply delivers continuous output current for 2s. After this, the output is switched off for approx. 18s before a new start attempt is automatically performed. This cycle is repeated as long as the overload exists. If the overload has been cleared, the device will operate normally. See Fig. 6-3

3) Discharge current of output capacitors is not included.
7. Hold-up Time

<table>
<thead>
<tr>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold-up Time</td>
<td>Typ. 67ms</td>
<td>67ms</td>
</tr>
<tr>
<td></td>
<td>Min. 50ms</td>
<td>50ms</td>
</tr>
<tr>
<td></td>
<td>Typ. 34ms</td>
<td>34ms</td>
</tr>
<tr>
<td></td>
<td>Min. 26ms</td>
<td>26ms</td>
</tr>
</tbody>
</table>

Fig. 7-1 Hold-up time vs. input voltage

Fig. 7-2 Shut-down behavior, definitions
8. DC-OK RELAY CONTACT

This feature monitors the output voltage on the output terminals of a running power supply.

Contact closes	As soon as the output voltage reaches typ. 90% of the adjusted output voltage level.
Contact opens	As soon as the output voltage dips more than 10% below the adjusted output voltage. Short dips will be extended to a signal length of 100ms. Dips shorter than 1ms will be ignored.
Switching hysteresis	Typ. 2V
Contact ratings	Maximal 60Vdc 0.3A, 30Vdc 1A, 30Vac 0.5A, resistive load
Minimal permissible load: 1mA at 5Vdc	
Isolation voltage	See dielectric strength table in chapter 18.

![DC-OK relay contact behavior](image_url)

Fig. 8-1 DC-OK relay contact behavior

- $V_{OUT} = V_{ADJ}$
- $0.9 \times V_{ADJ}$
- $V_{OUT} \leq 10\% \times V_{ADJ}$
- $V_{OUT} > 10\% \times V_{ADJ}$
- $V_{OUT} < 1\ms$
- $V_{OUT} > 1\ms$
- $V_{OUT} < 0.9 \times V_{ADJ}$
- $V_{OUT} > 0.9 \times V_{ADJ}$
- $V_{OUT} < 100\ms$
- $V_{OUT} > 100\ms$

open closed open closed
9. Efficiency and Power Losses

<table>
<thead>
<tr>
<th></th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>93.0%</td>
<td>93.8%</td>
<td>95.5%</td>
</tr>
<tr>
<td></td>
<td>92.7%</td>
<td>93.6%</td>
<td>95.4%</td>
</tr>
<tr>
<td>Average efficiency(^1)</td>
<td>92.8%</td>
<td>93.4%</td>
<td>94.5%</td>
</tr>
<tr>
<td>Power losses</td>
<td>2.5W</td>
<td>2.3W</td>
<td>2.0W</td>
</tr>
<tr>
<td></td>
<td>10.2W</td>
<td>9.5W</td>
<td>7.4W</td>
</tr>
<tr>
<td></td>
<td>19.5W</td>
<td>17.2W</td>
<td>12.3W</td>
</tr>
<tr>
<td></td>
<td>22.7W</td>
<td>19.7W</td>
<td>13.9W</td>
</tr>
</tbody>
</table>

\(^1\) The average efficiency is an assumption for a typical application where the power supply is loaded with 25% of the nominal load for 25% of the time, 50% of the nominal load for another 25% of the time, 75% of the nominal load for another 25% of the time and with 100% of the nominal load for the rest of the time.

Fig. 9-1 Efficiency vs. output current at 48V, typ.
Fig. 9-2 Losses vs. output current at 48V, typ.
Fig. 9-3 Efficiency vs. input voltage at 48V, 5.4A, typ.
Fig. 9-4 Losses vs. input voltage at 48V, 5.4A, typ.
10. LIFETIME EXPECTANCY

The Lifetime expectancy shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor’s manufacturer specification. The manufacturer of the electrolytic capacitors only guarantees a maximum life of up to 15 years (131 400h). Any number exceeding this value is a calculated theoretical lifetime which can be used to compare devices.

<table>
<thead>
<tr>
<th></th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime expectancy</td>
<td>141 000h</td>
<td>158 000h</td>
<td>188 000h</td>
</tr>
<tr>
<td></td>
<td>399 000h</td>
<td>446 000h</td>
<td>531 000h</td>
</tr>
<tr>
<td></td>
<td>63 000h</td>
<td>77 000h</td>
<td>120 000h</td>
</tr>
<tr>
<td></td>
<td>178 000h</td>
<td>219 000h</td>
<td>338 000h</td>
</tr>
<tr>
<td></td>
<td>45 000h</td>
<td>57 000h</td>
<td>97 000h</td>
</tr>
<tr>
<td></td>
<td>126 000h</td>
<td>161 000h</td>
<td>275 000h</td>
</tr>
</tbody>
</table>

11. MTBF

MTBF stands for **M**ean **T**ime **B**etween **F**ailure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.

The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1 000 000h means that statistically one unit will fail every 100 hours if 10 000 units are installed in the field. However, it cannot be determined if the failed unit has been running for 50 000h or only for 100h.

<table>
<thead>
<tr>
<th></th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBF SN 29500, IEC 61709</td>
<td>506 000h</td>
<td>523 000h</td>
<td>699 000h</td>
</tr>
<tr>
<td></td>
<td>897 000h</td>
<td>923 000h</td>
<td>1 201 000h</td>
</tr>
<tr>
<td>MTBF MIL HDBK 217F</td>
<td>223 000h</td>
<td>224 000h</td>
<td>248 000h</td>
</tr>
<tr>
<td></td>
<td>303 000h</td>
<td>303 000h</td>
<td>339 000h</td>
</tr>
<tr>
<td></td>
<td>50 000h</td>
<td>51 000h</td>
<td>58 000h</td>
</tr>
<tr>
<td></td>
<td>65 000h</td>
<td>65 000h</td>
<td>74 000h</td>
</tr>
</tbody>
</table>
12. FUNCTIONAL DIAGRAM

Fig. 12-1 Functional diagram

Input Fuse
Input Filter
Input Rectifier
Inrush Current Limiter

PFC Converter

Power Converter

Output Filter

Output Voltage Regulator

Output Voltage Monitor

Output

Temperature Shut-down

Output Power Manager

Output Over Voltage Protection

Temper-
ture
Shut-
down

Input Fuse
Input Filter
Input Rectifier
Inrush Current Limiter

PFC Converter

Power Converter

Output Filter

Output Voltage Regulator

Output Voltage Monitor

Output

Temperature Shut-down

Output Power Manager

Output Over Voltage Protection

VOUT

DC-ok LED
DC-ok Contact

DC-ok Relay

DC-ok Contact

+ +

- -

- -

www.pulspower.com Phone +49 89 9278 0 Germany
13. TERMINALS AND WIRING

The terminals are IP20 finger safe constructed and suitable for field- and factory wiring.

<table>
<thead>
<tr>
<th>Type</th>
<th>Input and output</th>
<th>DC-OK Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid wire</td>
<td>Screw terminals</td>
<td>Max. 1.5mm²</td>
</tr>
<tr>
<td>Stranded wire</td>
<td>Max. 4mm²</td>
<td>Max. 1.5mm²</td>
</tr>
<tr>
<td>American Wire Gauge</td>
<td>AWG 20-10</td>
<td>AWG 24-16</td>
</tr>
<tr>
<td>Wire diameter</td>
<td>Max. 2.8mm (including ferrules)</td>
<td>Max. 1.6mm (including ferrules)</td>
</tr>
<tr>
<td>Wire stripping length</td>
<td>7mm</td>
<td>7mm</td>
</tr>
<tr>
<td>Screwdriver</td>
<td>3.5mm slotted or cross-head No 2</td>
<td>Not required</td>
</tr>
<tr>
<td>Recommended tightening torque</td>
<td>1Nm</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Instructions:

a) Use appropriate copper cables that are designed for minimum operating temperatures of:
 - 60°C for ambient up to 45°C and
 - 75°C for ambient up to 60°C minimum
 - 90°C for ambient up to 70°C minimum.

b) Follow national installation codes and installation regulations!

c) Ensure that all strands of a stranded wire enter the terminal connection!

d) Unused terminal compartments should be securely tightened.

e) Ferrules are allowed.

Daisy chaining:

Daisy chaining (jumping from one power supply output to the next) is allowed as long as the average output current through one terminal pin does not exceed 25A. If the current is higher, use a separate distribution terminal block as shown in Fig. 13-2.
14. FRONT SIDE AND USER ELEMENTS

Fig. 14-1
Front side

A Input Terminals (screw terminals)
 N, L Line input
 PE (Protective Earth) input

B Output Terminals (screw terminals)
 (two identical + poles and three identical - poles)
 + Positive output
 - Negative (return) output

C Output voltage potentiometer
 Open the flap to adjust the output voltage. Factory set: 48.0V

D DC-OK LED (green)
 On, when the output voltage is >90% of the adjusted output voltage

E DC-OK Relay Contact
 (spring-clamp terminals)
 Monitors the output voltage of the running power supply. See chapter 8 for details.
15. EMC

The power supply is suitable for applications in industrial environment as well as in residential, commercial and light industry environments.

EMC Immunity

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Standard/Condition</th>
<th>Level</th>
<th>Criterions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge</td>
<td>EN 61000-4-2</td>
<td>8kV</td>
<td>Criterion A</td>
</tr>
<tr>
<td>Air discharge</td>
<td></td>
<td>15kV</td>
<td>Criterion A</td>
</tr>
<tr>
<td>Electromagnetic RF field</td>
<td>EN 61000-4-3</td>
<td>80MHz-2.7GHz</td>
<td>20V/m</td>
</tr>
<tr>
<td>Fast transients (Burst)</td>
<td>EN 61000-4-4</td>
<td>Input lines</td>
<td>4kV</td>
</tr>
<tr>
<td>Output lines</td>
<td></td>
<td>2kV</td>
<td>Criterion A</td>
</tr>
<tr>
<td>DC-OK signal (coupling clamp)</td>
<td></td>
<td>2kV</td>
<td>Criterion A</td>
</tr>
<tr>
<td>Surge voltage on input</td>
<td>EN 61000-4-5</td>
<td>L → N</td>
<td>2kV</td>
</tr>
<tr>
<td>L → PE, N → PE</td>
<td></td>
<td>4kV</td>
<td>Criterion A</td>
</tr>
<tr>
<td>Surge voltage on output</td>
<td>EN 61000-4-5</td>
<td>+ → -</td>
<td>1kV</td>
</tr>
<tr>
<td>+ / - → PE</td>
<td></td>
<td>2kV</td>
<td>Criterion A</td>
</tr>
<tr>
<td>Surge voltage on Signals</td>
<td>EN 61000-4-5</td>
<td>DC-OK signal → PE</td>
<td>1kV</td>
</tr>
<tr>
<td>Conducted disturbance</td>
<td>EN 61000-4-6</td>
<td>0.15-80MHz</td>
<td>20V</td>
</tr>
<tr>
<td>Mains voltage dips</td>
<td>EN 61000-4-11</td>
<td>0% of 100Vac</td>
<td>0Vac, 20ms</td>
</tr>
<tr>
<td>40% of 100Vac</td>
<td></td>
<td>40Vac, 200ms</td>
<td>Criterion C</td>
</tr>
<tr>
<td>70% of 100Vac</td>
<td></td>
<td>70Vac, 500ms</td>
<td>Criterion C</td>
</tr>
<tr>
<td>0% of 200Vac</td>
<td></td>
<td>0Vac, 20ms</td>
<td>Criterion A</td>
</tr>
<tr>
<td>40% of 200Vac</td>
<td></td>
<td>80Vac, 200ms</td>
<td>Criterion A</td>
</tr>
<tr>
<td>70% of 200Vac</td>
<td></td>
<td>140Vac, 500ms</td>
<td>Criterion A</td>
</tr>
<tr>
<td>Voltage interruptions</td>
<td>EN 61000-4-11</td>
<td>0% of 200Vac (≈0V)</td>
<td>5000ms</td>
</tr>
<tr>
<td>Voltage sags</td>
<td>SEMI F47</td>
<td>Dips on the input voltage according to SEMI F47 standard</td>
<td></td>
</tr>
<tr>
<td>Conducted emission</td>
<td>EN 55011, EN 55015, EN 55032, FCC Part 15, CISPR 11, CISPR 32</td>
<td>Class B</td>
<td></td>
</tr>
<tr>
<td>Conducted emission output lines</td>
<td>IEC/CISPR 16-1-2, IEC/CISPR 16-2-1</td>
<td>Limits for DC power port according EN 61000-6-3 fulfilled</td>
<td></td>
</tr>
<tr>
<td>Radiated emission</td>
<td>EN 55011, EN 55032</td>
<td>Class B</td>
<td></td>
</tr>
<tr>
<td>Harmonic current input</td>
<td>EN 60000-3-2</td>
<td>Class A fulfilled between 0A and 6A load</td>
<td></td>
</tr>
<tr>
<td>Powerful transients</td>
<td>VDE 0160</td>
<td>Over entire load range</td>
<td>750V, 0.3ms</td>
</tr>
</tbody>
</table>

Criterions:

A: Power supply shows normal operation behavior within the defined limits.
C: Temporary loss of function is possible. Power supply may shut-down and restarts by itself. No damage or hazards for the power supply will occur.

EMC Emission

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Standard/Condition</th>
<th>Level</th>
<th>Criterions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted emission input lines</td>
<td>EN 55011, EN 55015, EN 55032</td>
<td>Class B</td>
<td></td>
</tr>
<tr>
<td>Conducted emission output lines</td>
<td>IEC/CISPR 16-1-2, IEC/CISPR 16-2-1</td>
<td>Limits for DC power port according EN 61000-6-3 fulfilled</td>
<td></td>
</tr>
<tr>
<td>Radiated emission</td>
<td>EN 55011, EN 55032</td>
<td>Class B</td>
<td></td>
</tr>
<tr>
<td>Harmonic current input</td>
<td>EN 60000-3-2</td>
<td>Class A fulfilled between 0A and 6A load</td>
<td></td>
</tr>
<tr>
<td>Voltage fluctuations, flicker</td>
<td>EN 60000-3-3</td>
<td>Fulfilled</td>
<td></td>
</tr>
</tbody>
</table>

This device complies with FCC Part 15 rules.

Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

1) Tested with constant current loads, non pulsing
2) For information only, not mandatory for EN 61000-6-3
16. ENVIRONMENT

Operational temperature 1) -25°C to +70°C Reduce output power according to Fig. 16-1
Storage temperature -40°C to +85°C For storage and transportation
Output derating 6.5W/K Between +60°C and +70°C
Humidity 5 to 95% r.h. According to IEC 60068-2-30
Do not energize while condensation is present
Vibration sinusoidal 2) 2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g According to IEC 60068-2-6
Shock 2) 30g 6ms, 20g 11ms According to IEC 60068-2-27
Altitude 0 to 2000m Without any restrictions
2000 to 6000m Reduce output power or ambient temperature, see Fig. 16-2.
Altitude derating 15W/1000m or 5K/1000m Above 2000m, see Fig. 16-2
Over-voltage category III According to IEC 62477-1 for altitudes up to
II 2000m
According to IEC 62477-1 for altitudes from 2000m to 6000m
Degree of pollution 2) According to IEC 62477-1, not conductive
Audible noise Some audible noise may be emitted from the power supply during no load, overload or
short circuit.

1) Operational temperature is the same as the ambient or surrounding temperature and is defined as the air temperature 2cm below the unit.
2) Tested in combination with DIN rails according to EN 60715 with a height of 15mm and a thickness of 1.3mm and standard orientation.
17. PROTECTION FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output protection</td>
<td>Electronically protected against overload, no-load and short-circuits. In case of a protection event, audible noise may occur.</td>
<td></td>
</tr>
<tr>
<td>Output over-voltage protection</td>
<td>Typ. 58.5Vdc, Max. 60Vdc</td>
<td>In case of an internal power supply defect, a redundant circuit limits the maximum output voltage. The output shuts down and automatically attempts to restart.</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 20</td>
<td>EN/IEC 60529</td>
</tr>
<tr>
<td>Penetration protection</td>
<td>> 4mm</td>
<td>E.g. screws, small parts</td>
</tr>
<tr>
<td>Over-temperature protection</td>
<td>Yes</td>
<td>Output shut-down with automatic restart. The temperature sensor is installed on critical components inside the unit and turns the unit off in safety critical situations (e.g. derating requirements not observed, high ambient temperature, ventilation obstructed or the mounting orientation derating is not followed). There is no correlation between the operating temperature and turn-off temperature since this is dependent on input voltage, load and installation methods.</td>
</tr>
<tr>
<td>Input transient protection</td>
<td>MOV (Metal Oxide Varistor)</td>
<td>For protection values see chapter 15 (EMC).</td>
</tr>
<tr>
<td>Internal input fuse</td>
<td>Included</td>
<td>Not user replaceable slow-blow high-braking capacity fuse</td>
</tr>
</tbody>
</table>

18. SAFETY FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input / output separation</td>
<td>Double or reinforced galvanic isolation</td>
<td></td>
</tr>
<tr>
<td>SELV</td>
<td>IEC/EN 60950-1</td>
<td></td>
</tr>
<tr>
<td>PELV</td>
<td>IEC/EN 60240-1, EN 62477-1, IEC 60364-4-41</td>
<td></td>
</tr>
<tr>
<td>Class of protection</td>
<td>I P (Protective Earth) connection required</td>
<td></td>
</tr>
<tr>
<td>Isolation resistance</td>
<td>> 500MOhm</td>
<td>At delivered condition between input and output, measured with 500Vdc</td>
</tr>
<tr>
<td></td>
<td>> 500MOhm</td>
<td>At delivered condition between input and PE, measured with 500Vdc</td>
</tr>
<tr>
<td></td>
<td>> 500MOhm</td>
<td>At delivered condition between output and PE, measured with 500Vdc</td>
</tr>
<tr>
<td></td>
<td>> 500MOhm</td>
<td>At delivered condition between output and DC-OK contacts, measured with 500Vdc</td>
</tr>
<tr>
<td>PE resistance</td>
<td>< 0.1Ohm</td>
<td>Resistance between PE terminal and the housing in the area of the DIN rail mounting bracket.</td>
</tr>
<tr>
<td>Touch current (leakage current)</td>
<td>Typ. 0.14mA / 0.36mA</td>
<td>At 100Vac, 50Hz, TN-, TT-mains / IT-mains</td>
</tr>
<tr>
<td></td>
<td>Typ. 0.20mA / 0.50mA</td>
<td>At 120Vac, 60Hz, TN-, TT-mains / IT-mains</td>
</tr>
<tr>
<td></td>
<td>Typ. 0.33mA / 0.86mA</td>
<td>At 230Vac, 50Hz, TN-, TT-mains / IT-mains</td>
</tr>
<tr>
<td></td>
<td>Max. 0.18mA / 0.43mA</td>
<td>At 110Vac, 50Hz, TN-, TT-mains / IT-mains</td>
</tr>
<tr>
<td></td>
<td>Max. 0.26mA / 0.61mA</td>
<td>At 132Vac, 60Hz, TN-, TT-mains / IT-mains</td>
</tr>
<tr>
<td></td>
<td>Max. 0.44mA / 1.05mA</td>
<td>At 264Vac, 50Hz, TN-, TT-mains / IT-mains</td>
</tr>
</tbody>
</table>
19. Dielectric Strength

The output voltage is floating and has no ohmic connection to the ground. Type and factory tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2s up and 2s down). Connect all input-terminals together as well as all output poles before conducting the test. When testing, set the cut-off current settings to the value in the table below.

![Diagram showing dielectric strength with input terminals L, N, and ground, and output terminal DC-ok.]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type test</td>
<td>60s</td>
<td>2500Vac</td>
<td>4000Vac</td>
<td>1000Vac</td>
</tr>
<tr>
<td>Factory test</td>
<td>5s</td>
<td>2500Vac</td>
<td>2500Vac</td>
<td>500Vac</td>
</tr>
<tr>
<td>Field test</td>
<td>5s</td>
<td>2000Vac</td>
<td>2000Vac</td>
<td>500Vac</td>
</tr>
<tr>
<td>Cut-off current setting</td>
<td>> 10mA</td>
<td>> 10mA</td>
<td>> 20mA</td>
<td>> 1mA</td>
</tr>
</tbody>
</table>

B*) When testing input to DC-OK ensure that the max. voltage between DC-OK and the output is not exceeded (column D). We recommend connecting DC-OK pins and the output pins together when performing the test.

To fulfil the PELV requirements according to EN60204-1 § 6.4.1, we recommend that either the + pole, the – pole or any other part of the output circuit shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off when unnoticed earth faults occur.
20. **APPROVED, FULFILLED OR TESTED STANDARDS**

UL 508
- UL Certificate
- Listed equipment for category NMTR - Industrial Control Equipment
- Applicable for US and Canada
- E-File: E198865

IEC 61010-2-201
- CB Scheme Certificate
- Electrical Equipment for Measurement, Control and Laboratory Use - Particular requirements for control equipment

IEC 60950-1
- CB Scheme Certificate
- General safety requirements for Information Technology Equipment (ITE)

UL 60950-1
- UL Certificate
- Recognized component for category QQGQ - Information Technology Equipment (ITE)
- Applicable for US and Canada
- E-File: E137006

ATEX
- Agency Certificate (Bureau Veritas)
- EN 60079-0 Explosive atmospheres - General requirements
- EN 60079-7, EN 60079-15 Equipment protection by type of protection "e" and "n"
- Certificate: EPS 15 ATEX 1 101 X
- Temperature Code: T4
- Type of Protection: ec nC

IECEx
- IECEx Certificate
- IEC 60079-0 Explosive atmospheres - General requirements
- IEC 60079-7, IEC 60079-15 Equipment protection by type of protection "e" and "n"
- Certificate: IECEx EPS 15.0079X
- Temperature Code: T4
- Type of Protection: ec nC

Class I Div 2
- UL Certificate
- Listed equipment for category NRAD - Listed equipment Industrial Control Equipment for Use in Hazardous Locations
- Applicable for US and Canada
- E-File: E327416
- Temperature Code: T4
- Groups: A, B, C and D

Marine (DNV)
- DNV Certificate
- DNV Type approved product
- Certificate: TAA00002YX
- Temperature: Class D
- Humidity: Class B
- Vibration: Class C
- EMC: Class A
- Enclosure: Class A

Marine (ABS)
- ABS Design Assessment Certificate
- ABS (American Bureau of Shipment) assessed product
- Certificate: 17-HG1599236-PDA

Jan. 2023 / Rev. 1.4 DS-CP10.481-EN
All parameters are specified at 48V, 5.4A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
Jan. 2023 / Rev. 1.4 DS-CP10.481-EN
All parameters are specified at 48V, 5.4A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.

IEC 60068-2-60
Manufacturer’s Declaration (Online Document)
Environmental Tests, Flowing Mixed Gas Corrosion Test
IEC 60068-2-60 Method 4
Test Ke - Method 4
H2S: 10ppb
NO2: 200ppb
Cl2: 10ppb
SO2: 200ppb
Test Duration: 3 weeks, this simulates a service life of 10 years.

ISA-71.04 G3
Manufacturer’s Declaration (Online Document)
Airborne Contaminants Corrosion Test
ISA-71.04 G3
Severity Level: G3 Harsh
H2S: 100ppb
NOx: 1250ppb
Cl2: 20ppb
SO2: 300ppb
Test Duration: 3 weeks, this simulates a service life of 10 years.

Labs
Paint Wetting Impairment Substances Test (or LABS-Test)
Tested for Zone 2 and test class C1 according to VDMA 24364-C1-L/W for solvents and water-based paints
21. Regulatory Product Compliance

<table>
<thead>
<tr>
<th>EU Declaration of Conformity</th>
<th>The CE mark indicates conformance with the - EMC directive - ATEX directive - RoHS directive</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEEE Regulation</td>
<td>Manufacturer’s Declaration EU Regulation on Waste Electrical and Electronic Equipment Registered as business to business (B2B) products. EU Regulation 2012/19/EU</td>
</tr>
<tr>
<td>UKCA</td>
<td>UKCA Declaration of Conformity Trade conformity assessment for England, Scotland and Wales The UKCA mark indicates conformity with the UK Statutory Instruments 2016 No.1101, 2016 No.1091, 2012 No.3032</td>
</tr>
</tbody>
</table>
22. PHYSICAL DIMENSIONS AND WEIGHT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>39mm</td>
</tr>
<tr>
<td>Height</td>
<td>124mm</td>
</tr>
<tr>
<td>Depth</td>
<td>117mm</td>
</tr>
</tbody>
</table>

The DIN rail depth must be added to the unit depth to calculate the total required installation depth.

Weight

- 600g

DIN rail

- Use 35mm DIN rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm.

Housing material

- Body: Aluminium alloy
- Cover: Zinc-plated steel

Installation clearances

- See chapter 2

Fig. 22-1

Front view

Fig. 22-2

Side view

All dimensions in mm
23. ACCESSORIES

23.1. ZM10.WALL - WALL/PANEL MOUNT BRACKET

This bracket is used to mount the devices on a wall/panel without utilizing the DIN rail. The bracket can be mounted without detaching the DIN rail brackets from the power supply. PSU for illustration purpose only.

Fig. 23-1 Isometric view

Fig. 23-2 Isometric view

Fig. 23-3 Isometric view

Fig. 23-4 Wall/panel mounting, side view

Fig. 23-5 Hole pattern for wall mounting

Fig. 23-6 Wall/panel mounting, side view

Jan. 2023 / Rev. 1.4 DS-CP10.481-EN
All parameters are specified at 48V, 5.4A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
23.2. **ZM12.SIDE - SIDE MOUNTING BRACKET**

This bracket is used to mount DIMENSION units sideways with or without utilizing a DIN rail. The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the steel brackets can be mounted.

For sideway DIN rail mounting, the removed aluminum brackets and the black plastic slider need to be mounted on the steel bracket.
23.3. YR2.DIODE - REDUNDANCY MODULE

(2x 10A Inputs, 1x 20A output)

The YR2.DIODE is a dual redundancy module, which has two diodes as decoupling devices included. It can be used for various purposes. The most popular application is to configure highly reliable and true redundant power supply systems. Another interesting application is the separation of sensitive loads from non-sensitive loads. This avoids the distortion of the power quality for the sensitive loads which can cause controller failures.

The YR2.DIODE does not require an additional auxiliary voltage and is self-powered even in case of a short circuit across the output.

The unit is very slender and only requires 32mm width on the DIN rail.

23.4. YR40.482 - REDUNDANCY MODULE

(2x 20A Inputs, 1x 40A output)

The YR40.482 is equipped with two input channels, which are individually decoupled by utilizing MOSFET technology. Using MOSFETs instead of diodes reduces the heat generation and the voltage drop between input and output. The YR40.482 does not require an additional auxiliary voltage and is self-powered even in case of a short circuit across the output.

Due to the low power losses, the unit is very slender and only requires 46mm width on the DIN rail.
24. Application Notes

24.1. Peak Current Capability

The unit can deliver peak currents (up to several milliseconds) which are higher than the specified short term currents. This helps to start current demanding loads. Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady-state current and usually exceeds the nominal output current (including the PowerBoost). The same situation applies when starting a capacitive load.

The peak current capability also ensures the safe operation of subsequent circuit breakers of load circuits. The load branches are often individually protected with circuit breakers or fuses. In case of a short or an overload in one branch circuit, the fuse or circuit breaker need a certain amount of over-current to open in a timely manner. This avoids voltage loss in adjacent circuits.

The extra current (peak current) is supplied by the power converter and the built-in large sized output capacitors of the power supply. The capacitors get discharged during such an event, which causes a voltage dip on the output. The following two examples show typical voltage dips for resistive loads:

<table>
<thead>
<tr>
<th>Peak current voltage dips</th>
<th>Typically from 48V to 30.5V</th>
<th>At 10.8A for 50ms, resistive load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typically from 48V to 30.0V</td>
<td>At 27A for 2ms, resistive load</td>
</tr>
<tr>
<td></td>
<td>Typically from 48V to 25.3V</td>
<td>At 27A for 5ms, resistive load</td>
</tr>
</tbody>
</table>

Please note: The DC-OK relay triggers when the voltage dips more than 10% for longer than 1ms.
24.2. BACK-FEEDING LOADS
Loads such as decelerating motors and inductors can feed voltage back to the power supply. This feature is also called return voltage immunity or resistance against Back- E.M.F. (Electro Magnetic Force).
This power supply is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter whether the power supply is on or off.
The maximum allowed feed-back-voltage is 63Vdc. The maximum allowed feed-back peak current is 21A. Higher currents can temporarily shut-down the output voltage. The absorbing energy can be calculated according to the built-in large sized output capacitor which is specified in chapter 6.

24.3. EXTERNAL INPUT PROTECTION
The unit is tested and approved for branch circuits up to 30A (UL) and 32A (IEC). An external protection is only required if the supplying branch has an ampacity greater than this. Check also local codes and local requirements. In some countries local regulations might apply.
If an external fuse is necessary or utilized, minimum requirements need to be considered to avoid nuisance tripping of the circuit breaker. A minimum value of 6A B- or C-Characteristic breaker should be used.

24.4. OUTPUT CIRCUIT BREAKERS
Standard miniature circuit breakers (MCB’s or UL 1077 circuit breakers) are commonly used for AC-supply systems and may also be used on 48V branches.
MCB’s are designed to protect wires and circuits. If the ampere value and the characteristics of the MCB are adapted to the wire size that is used, the wiring is considered as thermally safe regardless of whether the MCB opens or not.
To avoid voltage dips and under-voltage situations in adjacent 48V branches which are supplied by the same source, a fast (magnetic) tripping of the MCB is desired. A quick shutdown within 10ms is necessary corresponding roughly to the ride-through time of PLC’s. This requires power supplies with high current reserves and large output capacitors. Furthermore, the impedance of the faulty branch must be sufficiently small in order for the current to actually flow.
The best current reserve in the power supply does not help if Ohm’s law does not permit current flow. The following table has typical test results showing which B- and C-Characteristic MCBs magnetically trip depending on the wire cross chapter and wire length.

| Maximal wire length for a fast (magnetic) tripping: |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| C-2A | 42m | 49m | 59m | 109m |
| C-3A | 13m | 24m | 28m | 42m |

*) Don’t forget to consider twice the distance to the load (or cable length) when calculating the total wire length (+ and – wire).
24.5. Parallel Use to Increase Output Power

CP10.481 power supplies can be paralleled to increase the output power. The output voltage of all power supplies shall be adjusted to the same value (±100mV) with the same load conditions on all units, or the units can be left with the factory settings. There is no feature included which balances the load current between the power supplies. Usually the power supply with the higher adjusted output voltage draws current until it goes into current limitation. This means no harm to this power supply as long as the ambient temperature stays below 40°C.

If more than three units are connected in parallel, a fuse or circuit breaker with a rating of 10A or 12A is required on each output. Alternatively, a diode or redundancy module can also be utilized.

Energize all units at the same time to avoid the overload HiccupPLUS mode. It also might be necessary to cycle the input power (turn-off for at least five seconds), if the output was in HiccupPLUS mode due to overload or short circuits and the required output current is higher than the current of one unit.

Restrictions:
Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other.
Do not use power supplies in parallel in mounting orientations other than the standard mounting orientation (terminals on bottom of the unit) or in any other condition where a derating of the output current is required (e.g. altitude, ...).
Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies.

24.6. Parallel Use for Redundancy

Power supplies can be paralleled for redundancy to gain higher system availability. Redundant systems require a certain amount of extra power to support the load in case one power supply unit fails. The simplest way is to put two decoupled power supplies in parallel. This is called a 1+1 redundancy. In case one power supply unit fails, the other one is automatically able to support the load current without any interruption. Redundant systems for a higher power demand are usually built in a N+1 method. E.g. five power supplies, each rated for 5A are paralleled to build a 20A redundant system. For N+1 redundancy the same restrictions apply as for increasing the output power, see also chapter 24.5.

Please note: Always use a redundancy module to decouple power supplies from each other. This prevents that the defective unit becomes a load for the other power supplies and the output voltage cannot be maintained any more. Further information and wiring configurations can be found in chapter 23.3.

Recommendations for building redundant power systems:

a) Use separate input fuses for each power supply.
b) Monitor the individual power supply units. Therefore, use the DC-OK relay contact of the CP10 power supply.
c) It is desirable to set the output voltages of all units to the same value (± 100mV) or leave it at the factory setting.
24.7. SERIES OPERATION

Power supplies of the same type can be connected in series for higher output voltages. It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc. Voltages with a potential above 60Vdc are not SELV any more and can be dangerous. Such voltages must be installed with a protection against touching.

Earthing of the output is required when the sum of the output voltage is above 60Vdc.

Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals.

Restrictions:
Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other.
Do not use power supplies in series in mounting orientations other than the standard mounting orientation (terminals on bottom of the unit).
Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies.

24.8. INDUCTIVE AND CAPACITIVE LOADS

The unit is designed to supply any kind of loads, including capacitive and inductive loads. If extreme large capacitors, such as EDLCs (electric double layer capacitors or “UltraCaps”) with a capacitance larger than 0.5F are connected to the output, the unit might charge the capacitor in the HiccupPLUS mode (see chapter 6).

24.9. CHARGING OF BATTERIES

The power supply can be used to charge lead-acid or maintenance free batteries (SLA or VRLA batteries). Four 12V batteries are needed in series.

Instructions for charging batteries:

a) Set output voltage (measured at no load and at the battery end of the cable) very precisely to the end-of-charge voltage.

<table>
<thead>
<tr>
<th>End-of-charge voltage</th>
<th>55.6V</th>
<th>55.0V</th>
<th>54.3V</th>
<th>53.6V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery temperature</td>
<td>10°C</td>
<td>20°C</td>
<td>30°C</td>
<td>40°C</td>
</tr>
</tbody>
</table>

b) Use a 10A or 12A circuit breaker (or blocking diode) between the power supply and the battery.
c) Ensure that the output current of the power supply is below the allowed charging current of the battery.
d) Use only matched batteries when putting 12V types in series.
e) Ensure that the ambient temperature of the power supply stays below 40°C.
f) The return current to the power supply (battery discharge current is typ. 1.8mA when the power supply is switched off (except in case a blocking diode is utilized).
24.10. **Operation on Two Phases**

The power supply can also be used on two-phases of a three-phase-system. Such a phase-to-phase connection is allowed as long as the supplying voltage is below 240V+10%.

![Diagram of power supply connection](image)

24.11. **Use in a Tightly Sealed Enclosure**

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. In such situations, the inside temperature defines the ambient temperature for the power supply.

The following measurement results can be used as a reference to estimate the temperature rise inside the enclosure.

The power supply is placed in the middle of the box, no other heat producing items are inside the box.

The temperature sensor inside the box is placed in the middle of the right side of the power supply with a distance of 1cm.

<table>
<thead>
<tr>
<th>Case</th>
<th>Enclosure size</th>
<th>Input voltage</th>
<th>Load</th>
<th>Temperature inside the box</th>
<th>Temperature outside the box</th>
<th>Temperature rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>110x180x165mm Rittal Typ IP66 Box PK 9516 100, plastic</td>
<td>230Vac</td>
<td>48V, 4.3A; (80%)</td>
<td>43.7°C</td>
<td>24.1°C</td>
<td>19.6K</td>
</tr>
<tr>
<td>B</td>
<td>110x180x165mm Rittal Typ IP66 Box PK 9516 100, plastic</td>
<td>230Vac</td>
<td>48V, 5.4A; (100%)</td>
<td>48.6°C</td>
<td>25.4°C</td>
<td>23.2K</td>
</tr>
<tr>
<td>C</td>
<td>180x180x165mm Rittal Typ IP66 Box PK 9519 100, plastic</td>
<td>230Vac</td>
<td>48V, 4.3A; (80%)</td>
<td>40.9°C</td>
<td>23.9°C</td>
<td>17.0K</td>
</tr>
<tr>
<td>D</td>
<td>180x180x165mm Rittal Typ IP66 Box PK 9519 100, plastic</td>
<td>230Vac</td>
<td>48V, 5.4A; (100%)</td>
<td>45.0°C</td>
<td>25.0°C</td>
<td>20.0K</td>
</tr>
</tbody>
</table>
24.12. MOUNTING ORIENTATIONS

Mounting orientations other than all terminals on the bottom require a reduction in continuous output power or a limitation in the maximum allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:

Curve A1 Recommended output current.
Curve A2 Max allowed output current (results in approximately half the lifetime expectancy of A1).

Fig. 24-5
Mounting Orientation A (Standard orientation)

Fig. 24-6
Mounting Orientation B (Upside down)

Fig. 24-7
Mounting Orientation C (Table-top mounting)

Fig. 24-8
Mounting Orientation D (Horizontal cw)

Fig. 24-9
Mounting Orientation E (Horizontal ccw)

Jan. 2023 / Rev. 1.4 DS-CP10.481-EN
All parameters are specified at 48V, 5.4A, 230Vac, 50Hz, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.