PRODUCT DESCRIPTION

The CP-Series are cost optimized power supplies without compromising quality, reliability and performance. The CP-Series is part of the PULS DIMENSION power supply family. CP5.481 and CP5.481-S1-C1 provide a DC-input range up to 150Vdc. In addition to the convincing characteristics of the CP5.481, the CP5.481-S1-C1 comes with quick-connect spring-clamp terminals preferred for applications which are exposed to mechanical vibration, plus its PCBs are conformally coated for increased protection.

The most outstanding features of these units are the small size, the high efficiency, the electronic inrush current limitation, active PFC and the wide operational temperature range. The devices also offer PowerBoost: Power reserves of 20%, which may even be used continuously at temperatures up to +45°C. Additionally, they can deliver 3 times the nominal output current for 12ms which helps to trip fuses on faulty output branches.

High immunity to transients and power surges as well as low electromagnetic emission, a DC-OK signal contact for remote monitoring, and a large international approval package for a variety of applications makes this unit suitable for nearly every situation.

ORDER NUMBERS

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>CP5.481</th>
<th>Screw terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CP5.481-S1-C1</td>
<td>Spring-clamp terminals, conformal coating</td>
</tr>
</tbody>
</table>

Accessory: ZM10.WALL Wall/Panel mount bracket

SHORT-FORM DATA

Output voltage: DC 48V Nominal
Adjustment range: 48 - 56V Factory setting 48.0V
Output current: 2.5 - 2.1A Up to +60°C ambient
 1.9 - 1.6A At +70°C ambient
Power Boost: 3.0A Up to +45°C ambient
Input voltage AC: AC 100-240V -15%/+10%
Mains frequency: 50 – 60Hz ±6%
Input current AC: 1.09 / 0.61A At 120 / 230Vac
Power factor: 0.98 / 0.91 At 120 / 230Vac
Input voltage DC: DC 110-150V +40%
Input current DC: 1.21 / 0.43A At 110 / 300Vdc
AC Inrush current: 5 / 6Apeak At 120 / 230Vac
Efficiency: 92.6 / 93.5% At 120 / 230Vac
Losses: 9.6 / 8.4W At 120 / 230Vac
Hold-up time: 35 / 35ms At 120 / 230Vac
Temperature range: -25°C to +70°C
Size (w hx d): 32x124x102mm Without DIN rail
Weight: 440g

MAIN APPROVALS

For details or a complete approval list see chapter 19.

UL 61010-2-201 ATEX IECEx

Class I Div 2

Jun. 2023 / Rev. 1.5 DS-CP5.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
INDEX

1. Intended Use ... 3
2. Installation Instructions .. 3
3. AC-Input .. 5
4. DC-Input .. 6
5. Input Inrush Current ... 7
6. Output ... 8
7. Hold-up Time ... 10
8. DC-OK Relay Contact .. 10
9. Efficiency and Power Losses 11
10. Functional Diagram ... 12
11. Front Side and User Elements 12
12. Connection Terminals ... 13
13. Lifetime Expectancy ... 14
14. MTBF ... 14
15. EMC .. 15
16. Environment ... 16
17. Safety and Protection Features 17
18. Dielectric Strength .. 18
19. Approved, Fulfilled or Tested Standards 19
20. Regulatory Product Compliance 20
21. Physical Dimensions and Weight 21
22. Accessories ... 22
22.1. ZM10.WALL - Wall/Panel Mount Bracket ... 22
22.2. YR2.DIODE - Redundancy Module 23
22.3. UF20.481 Buffer Module 23
23. Application Notes ... 24
23.1. Peak Current Capability 24
23.2. Charging of Batteries 25
23.3. Series Operation .. 25
23.4. Parallel Use to Increase Output Power 25
23.5. Parallel Use for Redundancy 26
23.6. Operation on Two Phases 27
23.7. Use in a Tightly Sealed Enclosure 27
23.8. Mounting Orientations 28

The information given in this document is correct to the best of our knowledge and experience at the time of publication. If not expressly agreed otherwise, this information does not represent a warranty in the legal sense of the word. As the state of our knowledge and experience is constantly changing, the information in this data sheet is subject to revision. We therefore kindly ask you to always use the latest issue of this document (available under www.pulspower.com).

No part of this document may be reproduced or utilized in any form without our prior permission in writing.

Packaging and packaging aids can and should always be recycled. The product itself may not be disposed of as domestic refuse.

TERMINOLOGY AND ABBREVIATIONS

PE and ☺ symbol PE is the abbreviation for Protective Earth and has the same meaning as the symbol ☺.
Earth, Ground This document uses the term “earth” which is the same as the U.S. term “ground”.
t.b.d. To be defined, value or description will follow later.
AC 230V A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually ±15%) included.
E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V)
230Vac A figure with the unit (Vac) at the end is a momentary figure without any additional tolerances included.
50Hz vs. 60Hz As long as not otherwise stated, AC 230V parameters are valid at 50Hz mains frequency.
may A key word indicating flexibility of choice with no implied preference.
shall A key word indicating a mandatory requirement.
should A key word indicating flexibility of choice with a strongly preferred implementation.

Jun. 2023 / Rev. 1.5 DS-CP5.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
1. INTENDED USE

This device is designed for installation in an enclosure and is intended for commercial use, such as in industrial control, process control, monitoring, measurement, Audio/Video, information or communication equipment or the like. Do not use this device in equipment, where malfunctioning may cause severe personal injury or threaten human life without additional appropriate safety devices, that are suited for the end-application. If this device is used in a manner outside of its specification, the protection provided by the device may be impaired.

2. INSTALLATION INSTRUCTIONS

WARNING Risk of electrical shock, fire, personal injury or death.
- Turn power off before working on the device and protect against inadvertent re-powering.
- Do not open, modify or repair the device.
- Use caution to prevent any foreign objects from entering into the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.
- Do not touch during power-on, and immediately after power-off. Hot surface may cause burns.

Obey the following installation instructions:
This device may only be installed and put into operation by qualified personnel. This device does not contain serviceable parts. The tripping of an internal fuse is caused by an internal defect. If damage or malfunction should occur during installation or operation, immediately turn power off and send unit to the factory for inspection.
Install device in an enclosure providing protection against electrical, mechanical and fire hazards. Install the device onto a DIN rail according to EN 60715 with the input terminals on the bottom and the output terminals on the top of the device. Other mounting orientations require a reduction in output current.
Make sure that the wiring is correct by following all local and national codes. Use appropriate copper cables that are designed for a minimum operating temperature of 60°C for ambient temperatures up to +45°C, 75°C for ambient temperatures up to +60°C and 90°C for ambient temperatures up to +70°C. Ensure that all strands of a stranded wire enter the terminal connection. Use ferrules for wires on the input terminals. Unused screw terminals should be securely tightened.
The device is designed for pollution degree 2 areas in controlled environments. No condensation or frost is allowed. The enclosure of the device provides a degree of protection of IP20. The housing does not provide protection against spilled liquids. The isolation of the device is designed to withstand impulse voltages of overvoltage category III according to IEC 60664-1. The device is designed as “Class of Protection I” equipment according to IEC 61140. Do not use without a proper PE (Protective Earth) connection.
The device is suitable to be supplied from TN, TT or IT mains networks. The continuous voltage between the input terminal and the PE potential must not exceed 300Vac. The input can also be powered from batteries or similar DC sources. The continuous voltage between the supply voltage and the PE/ground potential must not exceed 360Vdc. A disconnecting means shall be provided for the input of the device.
The device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid! The device is designed for altitudes up to 5000m. Above 2000m a reduction in output current and over voltage category is required.

Jun. 2023 / Rev. 1.5 DS-CPS.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
Keep the following minimum installation clearances: 40mm on top, 20mm on the bottom, 5mm left and right side. Increase the 5mm to 15mm in case the adjacent device is a heat source. When the device is permanently loaded with less than 50%, the 5mm can be reduced to zero.

The device is designed, tested and approved for branch circuits up to 32A (IEC) and 30A (UL) without additional protection device. If an external fuse is utilized, do not use circuit breakers smaller than 6A B- or C-Characteristic to avoid a nuisance tripping of the circuit breaker.

The maximum surrounding air temperature is +70°C. The operational temperature is the same as the ambient or surrounding air temperature and is defined 2cm below the device.

The device is designed to operate in areas between 5% and 95% relative humidity.

(only CP5.481)

Installation Instructions for Hazardous Location Areas

The device is suitable for use in Class I Division 2 Groups A, B, C, D locations and for use in Group II Category 3 (Zone 2) environments.

Classification: ATEX: EPS 19 ATEX 1 201 X, II 3G Ex ec nC IIC T4 Gc / IECEx EPS 19.0078X

WARNING EXPLOSION HAZARDS!

Installation in standard mounting orientation with the input terminals on the bottom of the unit. For non-standard mounting orientations a reduction of output current is required.

Do not disconnect the device or operate the voltage adjustment unless power has been switched off or the area is known to be non-hazardous.

A suitable enclosure must be provided for the end product which has a minimum protection of IP54 and fulfils the requirements of the EN 60079-0.
3. AC-INPUT

The device is suitable to be supplied from TN, TT or IT mains networks with AC voltage. For suitable DC supply voltages see chapter 4.

<table>
<thead>
<tr>
<th>AC input</th>
<th>nom.</th>
<th>AC 100-240V</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC input range</td>
<td>85-264Vac</td>
<td>264-300Vac</td>
</tr>
<tr>
<td>Allowed voltage L or N to earth</td>
<td>max.</td>
<td>300Vac</td>
</tr>
<tr>
<td>Input frequency</td>
<td>nom.</td>
<td>50–60Hz</td>
</tr>
<tr>
<td>Turn-on voltage</td>
<td>typ.</td>
<td>80Vac</td>
</tr>
<tr>
<td>Shut-down voltage</td>
<td>typ.</td>
<td>74Vac</td>
</tr>
<tr>
<td>External input protection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AC 100V **AC 120V** **AC 230V**

<table>
<thead>
<tr>
<th>Input current</th>
<th>typ.</th>
<th>1.31A</th>
<th>1.09A</th>
<th>0.61A</th>
<th>At 48V, 2.5A, see Fig. 3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power factor</td>
<td>typ.</td>
<td>0.99</td>
<td>0.98</td>
<td>0.91</td>
<td>At 48V, 2.5A, see Fig. 3-4</td>
</tr>
<tr>
<td>Crest factor</td>
<td>typ.</td>
<td>1.7</td>
<td>1.8</td>
<td>2.2</td>
<td>At 48V, 2.5A, The crest factor is the mathematical ratio of the peak value to RMS value of the input current waveform.</td>
</tr>
</tbody>
</table>

Start-up delay

typ. | 420ms | 370ms | 385ms | See Fig. 3-2 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise time</td>
<td>typ.</td>
<td>110ms</td>
<td>110ms</td>
<td>115ms</td>
</tr>
<tr>
<td></td>
<td>typ.</td>
<td>160ms</td>
<td>160ms</td>
<td>160ms</td>
</tr>
</tbody>
</table>

Turn-on overshoot

max. | 600mV | 600mV | 600mV | See Fig. 3-2 |

Fig. 3-1 Input voltage range

Fig. 3-2 Turn-on behavior, definitions

Fig. 3-3 Input current vs. output current at 24V output voltage

Fig. 3-4 Power factor vs. output current at 24V output voltage

Jun. 2023 / Rev. 1.5 DS-CP5.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
4. DC-INPUT

The device is suitable to be supplied from a DC input voltage. Use a battery or a similar DC source. A supply from the intermediate DC-bus of a frequency converter is not recommended and can cause a malfunction or damage the unit. Connect +pole to L, –pole to N and the PE terminal to an earth wire or to the machine ground.

<table>
<thead>
<tr>
<th>DC input</th>
<th>nom.</th>
<th>DC 110-150V</th>
<th>±20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC input range</td>
<td></td>
<td>88-180Vdc</td>
<td></td>
</tr>
<tr>
<td>DC input current</td>
<td>typ.</td>
<td>1.21A</td>
<td>At 110Vdc, at 48V, 2.5A</td>
</tr>
<tr>
<td></td>
<td>typ.</td>
<td>0.43A</td>
<td>At 300Vdc, at 48V, 2.5A</td>
</tr>
<tr>
<td>Allowed Voltage (+) or (-) input to Earth</td>
<td>max.</td>
<td>360Vdc</td>
<td>Continuous, according to IEC 60664-1</td>
</tr>
<tr>
<td>Turn-on voltage</td>
<td>typ.</td>
<td>74Vdc</td>
<td>Steady state value</td>
</tr>
<tr>
<td>Shut-down voltage</td>
<td>typ.</td>
<td>67Vdc</td>
<td>Steady state value</td>
</tr>
</tbody>
</table>

Fig. 4-1 Wiring for DC Input
5. INPUT INRUSH CURRENT

An active inrush limitation circuit (NTCs, which are bypassed by a relay contact) limits the input inrush current after turn-on of the input voltage.

The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on.

<table>
<thead>
<tr>
<th></th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inrush current</td>
<td>max.</td>
<td>8 A<sub>peak</sub></td>
<td>7 A<sub>peak</sub></td>
</tr>
<tr>
<td></td>
<td>typ.</td>
<td>4 A<sub>peak</sub></td>
<td>4 A<sub>peak</sub></td>
</tr>
<tr>
<td></td>
<td>typ.</td>
<td>5 A<sub>peak</sub></td>
<td>5 A<sub>peak</sub></td>
</tr>
<tr>
<td>Inrush energy</td>
<td>max.</td>
<td>0.4 A²s</td>
<td>0.5 A²s</td>
</tr>
</tbody>
</table>

Fig. 5-1 Typical turn-on behaviour at nominal load, 120Vac input and 25°C ambient

Fig. 5-2 Typical turn-on behaviour at nominal load, 230Vac input and 25°C ambient
6. Output

The output provides a SELV/PELV rated voltage, which is galvanically isolated from the input voltage. The output is designed to supply any kind of loads, including capacitive and inductive loads. If extreme large capacitors, such as EDLC (electric double layer capacitors or “UltraCaps”) with a capacitance > 0.1F are connected to the output, the unit might charge the capacitor in an intermittent mode.

The output is electronically protected against overload, no-load and short-circuits. In case of a protection event, audible noise may occur.

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>nom.</th>
<th>48V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment range</td>
<td>nom.</td>
<td>48-56V</td>
</tr>
<tr>
<td>max.</td>
<td>58.0V</td>
<td></td>
</tr>
</tbody>
</table>

Guaranteed value: This is the maximum output voltage which can occur at the clockwise end position of the potentiometer due to tolerances. It is not a guaranteed value which can be achieved.

<table>
<thead>
<tr>
<th>Factory settings</th>
<th>typ.</th>
<th>48.0V</th>
</tr>
</thead>
<tbody>
<tr>
<td>±0.2%, at full load and cold unit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line regulation</th>
<th>max.</th>
<th>10mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load regulation</td>
<td>max.</td>
<td>50mV</td>
</tr>
</tbody>
</table>

Between 85 and 300Vac

<table>
<thead>
<tr>
<th>Ripple and noise voltage</th>
<th>max.</th>
<th>50mVpp</th>
</tr>
</thead>
<tbody>
<tr>
<td>max.</td>
<td>300mVpp</td>
<td></td>
</tr>
</tbody>
</table>

Load >0.1A, Bandwidth 20Hz to 20MHz, 50Ohm
Load <0.1A, Bandwidth 20Hz to 20MHz, 50Ohm

<table>
<thead>
<tr>
<th>Output current</th>
<th>nom.</th>
<th>2.5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>nom.</td>
<td>1.9A</td>
<td></td>
</tr>
<tr>
<td>nom.</td>
<td>2.1A</td>
<td></td>
</tr>
<tr>
<td>nom.</td>
<td>1.6A</td>
<td></td>
</tr>
</tbody>
</table>

At 48V and up to +60°C ambient temperature
At 48V and +70°C ambient temperature,
At 56V and up to +60°C ambient temperature
At 56V and +70°C ambient temperature

PowerBoost decreases linearly to nominal power between +45°C and +60°C, see chapter 16

<table>
<thead>
<tr>
<th>PowerBoost(1)</th>
<th>Nom.</th>
<th>3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom.</td>
<td>2.6A</td>
<td></td>
</tr>
</tbody>
</table>

At 48V and up to +45°C ambient temperature
At 56V and up to +45°C ambient temperature

<table>
<thead>
<tr>
<th>Fuse breaking current</th>
<th>typ.</th>
<th>7.5A</th>
</tr>
</thead>
</table>

Up to 12ms once every five seconds, see Fig. 6-2. The fuse braking current is an enhanced transient current which helps to trip fuses on faulty output branches. The output voltage stays above 40V.

<table>
<thead>
<tr>
<th>Overload behaviour</th>
<th>Continuous current</th>
<th>Intermittent current(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For output voltage above 26Vdc, see Fig. 6-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For output voltage below 26Vdc, see Fig. 6-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overload/ short-circuit current</th>
<th>max.</th>
<th>3.4A</th>
</tr>
</thead>
<tbody>
<tr>
<td>typ.</td>
<td>5A</td>
<td></td>
</tr>
<tr>
<td>max.</td>
<td>1.5A</td>
<td></td>
</tr>
</tbody>
</table>

Continuous current, see Fig. 6-1
Intermittent current peak value for typ. 1s
Load impedance 50mOhm, see Fig. 6-3
Discharge current of output capacitors is not included.
Intermittent current average value (R.M.S.)
Load impedance 50mOhm, see Fig. 6-3

<table>
<thead>
<tr>
<th>Output capacitance</th>
<th>typ.</th>
<th>750µF</th>
</tr>
</thead>
</table>

Included inside the power supply

<table>
<thead>
<tr>
<th>Back-feeding loads</th>
<th>max.</th>
<th>63V</th>
</tr>
</thead>
</table>

The unit is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter whether the power supply is on or off. The absorbing energy can be calculated according to the built-in large sized output capacitor.

1) PowerBoost: This power/ current is continuously allowed up to an ambient temperature of +45°C.
 Above +45°C, do not use this power or current longer than a duty cycle of 10% and/ or not longer than 1 minute every 10 minutes.

2) At heavy overloads, the power supply delivers continuous output current for 1s. After this, the output is switched off for approx. 9s before a new start attempt is automatically performed. This cycle is repeated as long as the overload exists. If the overload has been cleared, the device will operate normally. See Fig. 6-3.

Jun. 2023 / Rev. 1.5 DS-CP5.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
Fig. 6-1 Output voltage vs. output current, typ.

![Output voltage vs. output current, typ.](image1)

Fig. 6-2 Dynamic output current capability, typ.

![Dynamic output current capability, typ.](image2)

Fig. 6-3 Short-circuit on output, HiccupPLUS mode, typ.

![Short-circuit on output, HiccupPLUS mode, typ.](image3)
7. HOLD-UP TIME

The hold-up time is the time during which a power supply’s output voltage remains within specification following the loss of input power. The hold-up time is output load dependent. At no load, the hold-up time can be up to several seconds. The green DC-OK LED is also on during this time.

<table>
<thead>
<tr>
<th>Hold-up Time</th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>typ.</td>
<td>70ms</td>
<td>70ms</td>
<td>70ms</td>
</tr>
<tr>
<td>min.</td>
<td>55ms</td>
<td>55ms</td>
<td>55ms</td>
</tr>
<tr>
<td>typ.</td>
<td>35ms</td>
<td>35ms</td>
<td>35ms</td>
</tr>
<tr>
<td>min.</td>
<td>27ms</td>
<td>27ms</td>
<td>27ms</td>
</tr>
</tbody>
</table>

At 48V, 5A, see Fig. 7-1

8. DC-OK RELAY CONTACT

This feature monitors the output voltage on the output terminals of a running power supply.

- Contact closes: As soon as the output voltage reaches typ. 90% of the adjusted output voltage level.
- Contact opens: As soon as the output voltage dips more than 10% below the adjusted output voltage. Short dips will be extended to a signal length of 100ms. Dips shorter than 1ms will be ignored.
- Switching hysteresis: Typically 2V
- Contact ratings:
 - Maximal: 60Vdc 0.3A, 30Vdc 1A, 30Vac 0.5A, resistive load
 - Minimal permissible load: 1mA at 5Vdc
- Isolation voltage: See dielectric strength table in chapter 18.
9. **EFFICIENCY AND POWER LOSSES**

<table>
<thead>
<tr>
<th></th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>typ.</td>
<td>92.1%</td>
<td>92.6%</td>
<td>93.5%</td>
</tr>
<tr>
<td></td>
<td>typ.</td>
<td>92.0%</td>
<td>92.5%</td>
<td>93.6%</td>
</tr>
<tr>
<td>Average efficiency (^1)</td>
<td>typ.</td>
<td>90.8%</td>
<td>91.1%</td>
<td>91.6%</td>
</tr>
<tr>
<td>Power losses</td>
<td>typ.</td>
<td>1.5W</td>
<td>1.5W</td>
<td>1.6W</td>
</tr>
<tr>
<td></td>
<td>typ.</td>
<td>5.8W</td>
<td>5.6W</td>
<td>5.5W</td>
</tr>
<tr>
<td></td>
<td>typ.</td>
<td>10.3W</td>
<td>9.6W</td>
<td>8.4W</td>
</tr>
<tr>
<td></td>
<td>typ.</td>
<td>12.5W</td>
<td>11.7W</td>
<td>9.8W</td>
</tr>
<tr>
<td></td>
<td>At 48V, 2.5A</td>
<td></td>
<td>At 48V, 0A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At 48V, 1.25A</td>
<td></td>
<td>At 48V, 2.5A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At 48V, 3A (PowerBoost)</td>
<td></td>
<td>At 48V, 3A (PowerBoost)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>typ.</td>
<td>5.88W</td>
<td>5.66W</td>
<td>5.55W</td>
</tr>
<tr>
<td></td>
<td>typ.</td>
<td>10.32W</td>
<td>9.64W</td>
<td>8.44W</td>
</tr>
<tr>
<td></td>
<td>typ.</td>
<td>12.50W</td>
<td>11.70W</td>
<td>9.80W</td>
</tr>
<tr>
<td></td>
<td>typ.</td>
<td>10.32W</td>
<td>9.64W</td>
<td>8.44W</td>
</tr>
</tbody>
</table>

\(^1\) The average efficiency is an assumption for a typical application where the power supply is loaded with 25% of the nominal load for 25% of the time, 50% of the nominal load for another 25% of the time, 75% of the nominal load for another 25% of the time and with 100% of the nominal load for the rest of the time.

Fig. 9-1 Efficiency vs. output current at 48V, typ.

Fig. 9-2 Losses vs. output current at 48V, typ.

Fig. 9-3 Efficiency vs. input voltage at 48V, 2.5A, typ.

Fig. 9-4 Losses vs. input voltage at 48V, 2.5A, typ.

Jun. 2023 / Rev. 1.5 DS-CP5.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
10. Functional Diagram

Fig. 10-1 Functional diagram

- Input Fuse
- Input Rectifier
- Inrush Current Limiter
- PFC Converter
- Power Converter
- Output Filter
- Output Voltage Regulator
- Output Voltage Monitor
- DC-ok Relay
- DC-ok LED
- VOUT

11. Front Side and User Elements

Fig. 11-1 Front side

- CP5.481

Fig. 11-2 Front side

- CP5.481-S1-C1

A Input Terminals
- N, L Line input
- PE (Protective Earth) input

B Output Terminals
- Two identical + poles and two identical - poles
 + Positive output
 - Negative output (return)

C Output Voltage Potentiometer

D DC-OK LED (green)
 On, when the output voltage is >90% of the adjusted output voltage

E DC-OK Relay Contact
 The DC-OK relay contact is synchronized with the DC-OK LED. See chapter 8 for details.
12. TERMINALS AND WIRING

The terminals are IP20 Finger safe constructed and suitable for field- and factory wiring.

CP5.481

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>DC-OK-Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Screw terminal</td>
<td>Screw terminal</td>
</tr>
<tr>
<td>Solid wire</td>
<td>Max. 6mm²</td>
<td>Max. 6mm²</td>
</tr>
<tr>
<td>Stranded wire</td>
<td>Max. 4mm²</td>
<td>Max. 4mm²</td>
</tr>
<tr>
<td>American Wire Gauge</td>
<td>AWG 20-10</td>
<td>AWG 20-10</td>
</tr>
<tr>
<td>Max. wire diameter (including ferrules)</td>
<td>2.8mm</td>
<td>2.8mm</td>
</tr>
<tr>
<td>Recommended tightening torque</td>
<td>Max. 1Nm</td>
<td>Max. 1Nm</td>
</tr>
<tr>
<td>Wire stripping length</td>
<td>7mm</td>
<td>7mm</td>
</tr>
<tr>
<td>Screwdriver</td>
<td>3.5mm slotted or cross-head No 2</td>
<td>3.5mm slotted or cross-head No 2</td>
</tr>
</tbody>
</table>

CP5.481-S1-C1

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>DC-OK-Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Spring-clamp terminal</td>
<td>Spring-clamp terminal</td>
</tr>
<tr>
<td>Solid wire</td>
<td>Max. 6mm²</td>
<td>Max. 6mm²</td>
</tr>
<tr>
<td>Stranded wire</td>
<td>Max. 4mm²</td>
<td>Max. 4mm²</td>
</tr>
<tr>
<td>American Wire Gauge</td>
<td>AWG 20-10</td>
<td>AWG 20-10</td>
</tr>
<tr>
<td>Max. wire diameter (including ferrules)</td>
<td>2.8mm</td>
<td>2.8mm</td>
</tr>
<tr>
<td>Wire stripping length</td>
<td>10mm</td>
<td>10mm</td>
</tr>
<tr>
<td>Screwdriver</td>
<td>3mm slotted to open the spring</td>
<td>3mm slotted to open the spring</td>
</tr>
</tbody>
</table>

Daisy chaining:

Daisy chaining (jumping from one power supply output to the next) is allowed as long as the average output current through one terminal pin does not exceed 25A. If the current is higher, use a separate distribution terminal block as shown in Fig. 12-2.

Jun. 2023 / Rev. 1.5 DS-CP5.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
13. LIFETIME EXPECTANCY

The Lifetime expectancy shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor’s manufacturer specification. The manufacturer of the electrolytic capacitors only guarantees a maximum life of up to 15 years (131 400h). Any number exceeding this value is a calculated theoretical lifetime which can be used to compare devices.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime expectancy</td>
<td>161 000h</td>
<td>163 000h</td>
<td>166 000h</td>
</tr>
<tr>
<td></td>
<td>456 000h</td>
<td>462 000h</td>
<td>469 000h</td>
</tr>
<tr>
<td></td>
<td>57 000h</td>
<td>62 000h</td>
<td>71 000h</td>
</tr>
<tr>
<td></td>
<td>161 000h</td>
<td>176 000h</td>
<td>201 000h</td>
</tr>
<tr>
<td></td>
<td>35 000h</td>
<td>41 000h</td>
<td>49 000h</td>
</tr>
<tr>
<td></td>
<td>100 000h</td>
<td>115 000h</td>
<td>139 000h</td>
</tr>
</tbody>
</table>

14. MTBF

MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.

The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1 000 000h means that statistically one unit will fail every 100 hours if 10 000 units are installed in the field. However, it can not be determined if the failed unit has been running for 50 000h or only for 100h.

For these types of units the MTTF (Mean Time To Failure) value is the same value as the MTBF value.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBF SN 29500, IEC 61709</td>
<td>772 000h</td>
<td>778 000h</td>
<td>836 000h</td>
</tr>
<tr>
<td></td>
<td>1 353 000h</td>
<td>1 364 000h</td>
<td>1 457 000h</td>
</tr>
<tr>
<td>MTBF MIL HDBK 217F</td>
<td>327 000h</td>
<td>331 000h</td>
<td>355 000h</td>
</tr>
<tr>
<td></td>
<td>473 000h</td>
<td>478 000h</td>
<td>510 000h</td>
</tr>
<tr>
<td></td>
<td>78 000h</td>
<td>80 000h</td>
<td>86 000h</td>
</tr>
<tr>
<td></td>
<td>105 000h</td>
<td>107 000h</td>
<td>115 000h</td>
</tr>
</tbody>
</table>
15. EMC

The EMC behavior of the device is designed for applications in industrial environment as well as in residential, commercial and light industry environments.

The device is investigated according to EN 61000-6-1, EN 61000-6-2, EN 61000-6-3 and EN 61000-6-4.

EMC Immunity

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Standards</th>
<th>Volts</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge</td>
<td>EN 61000-4-2</td>
<td>8kV</td>
<td>A</td>
</tr>
<tr>
<td>Contact discharge</td>
<td></td>
<td>15kV</td>
<td>A</td>
</tr>
<tr>
<td>Electromagnetic RF field</td>
<td>EN 61000-4-3</td>
<td>80MHz-2.7GHz</td>
<td>A</td>
</tr>
<tr>
<td>Fast transients (burst)</td>
<td>EN 61000-4-4</td>
<td>4kV</td>
<td>A</td>
</tr>
<tr>
<td>Input lines</td>
<td></td>
<td>2kV</td>
<td>A</td>
</tr>
<tr>
<td>Output lines</td>
<td></td>
<td>2kV</td>
<td>A</td>
</tr>
<tr>
<td>DC-OK signal (coupling clamp)</td>
<td></td>
<td>2kV</td>
<td>A</td>
</tr>
<tr>
<td>Surge voltage on input</td>
<td>EN 61000-4-5</td>
<td>L → N</td>
<td>2kV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L → PE, N → PE</td>
<td>4kV</td>
</tr>
<tr>
<td>Surge voltage on output</td>
<td>EN 61000-4-5</td>
<td>+ → -</td>
<td>1kV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ / - → PE</td>
<td>2kV</td>
</tr>
<tr>
<td>Surge voltage on DC-OK</td>
<td>EN 61000-4-5</td>
<td>DC-OK signal → PE</td>
<td>1kV</td>
</tr>
<tr>
<td>Conducted disturbance</td>
<td>EN 61000-4-6</td>
<td>0.15-80MHz</td>
<td>20V</td>
</tr>
<tr>
<td>Mains voltage dips</td>
<td>EN 61000-4-11</td>
<td>0% of 100Vac</td>
<td>0Vac, 20ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40% of 100Vac</td>
<td>40Vac, 200ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70% of 100Vac</td>
<td>70Vac, 500ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0% of 200Vac</td>
<td>0Vac, 20ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40% of 200Vac</td>
<td>80Vac, 200ms, <2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40% of 200Vac</td>
<td>80Vac, 200ms, >2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70% of 200Vac</td>
<td>140Vac, 500ms</td>
</tr>
<tr>
<td>Voltage interruptions</td>
<td>EN 61000-4-11</td>
<td>0% of 200Vac (=0V)</td>
<td>5000ms</td>
</tr>
<tr>
<td>Powerful transients</td>
<td>VDE 0160</td>
<td>Over entire load range</td>
<td>750V, 0.3ms</td>
</tr>
</tbody>
</table>

Performance criterions:
A: The device shows normal operation behavior within the defined limits.
C: Temporary loss of function is possible. The device may shut-down and restarts by itself. No damage or hazards for the device will occur.

EMC Emission

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Standards</th>
<th>Limits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted emission input lines</td>
<td>EN 55011, EN 55032, FCC Part 15, CISPR 11, CISPR 32</td>
<td>Class B</td>
<td>Class B</td>
</tr>
<tr>
<td>Conducted emission output lines</td>
<td>IEC/CISPR 16-1-2, IEC/CISPR 16-2-1</td>
<td>Limits for local DC power networks fulfilled</td>
<td></td>
</tr>
<tr>
<td>Radiated emission</td>
<td>EN 55011, EN 55032</td>
<td>Class B</td>
<td>Class B</td>
</tr>
<tr>
<td>Harmonic input current (PFC)</td>
<td>EN 61000-3-2</td>
<td>Fulfilled for Class A equipment</td>
<td></td>
</tr>
<tr>
<td>Voltage fluctuations, flicker</td>
<td>EN 61000-3-3</td>
<td>Fulfilled: tested with constant current loads, no pulsing</td>
<td></td>
</tr>
</tbody>
</table>

This device complies with FCC Part 15 rules.
Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Switching Frequencies

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Frequency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC converter</td>
<td>30kHz to 140kHz</td>
<td>Input voltage and output load dependent</td>
</tr>
<tr>
<td>Main converter</td>
<td>60kHz to 140kHz</td>
<td>Output load dependent</td>
</tr>
<tr>
<td>Auxiliary converter</td>
<td>30kHz to 60kHz</td>
<td>Output load dependent</td>
</tr>
<tr>
<td>DC-OK relay converter</td>
<td>18kHz to 25kHz</td>
<td>Output voltage dependent</td>
</tr>
</tbody>
</table>

Jun. 2023 / Rev. 1.5 DS-CP5.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
16. Environment

Operational temperature
-25°C to +70°C
Operational temperature is the same as the ambient or surrounding temperature and is defined as the air temperature 2cm below the unit.

Storage temperature
-40°C to +85°C
For storage and transportation

Output derating
- 3W/K: Between +60°C and +70°C
- 0.167A/1000m or 5K/1000m: For altitudes >2000m, see Fig. 16-2
- The derating is not hardware controlled. The user has to take this into consideration to stay below the derated current limits in order not to overload the unit.

Humidity
5 to 95% r.h.
According to IEC 60068-2-30

Atmospheric pressure
110-54kPa
See Fig. 16-2 for details

Altitude
Up to 5000m
See Fig. 16-2 for details

Over-voltage category
- III: According to IEC 60664-1 for altitudes up to 2000m
- II: According to IEC 60664-1, for altitudes above 2000m

Degree of pollution
2
According to IEC 62368-1, not conductive

Vibration sinusoidal
- 2-17.8Hz: ±1.6mm;
- 17.8-500Hz: 2g
- 2 hours / axis
According to IEC 60068-2-6

Shock
- 30g 6ms, 20g 11ms
- 3 bumps per direction, 18 bumps in total
- Shock and vibration is tested in combination with DIN rails according to EN 60715 with a height of 15mm and a thickness of 1.3mm and standard orientation.
According to IEC 60068-2-27

Audible noise
Some audible noise may be emitted from the power supply during no load, overload or short circuit.

Fig. 16-1 Output current vs. ambient temp.
(Innom 2.5A; Iout with PowerBoost = 3A)

Fig. 16-2 Output current vs. altitude
17. SAFETY AND PROTECTION FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
</table>
| **Isolation resistance** | min. 500MOhm
At delivered condition between input and output, measured with 500Vdc
min. 500MOhm
At delivered condition between input and PE, measured with 500Vdc
min. 500MOhm
At delivered condition between output and PE, measured with 500Vdc
min. 500MOhm
At delivered condition between output and DC-OK contacts, measured with 500Vdc |
| **PE resistance** | max. 0.1Ohm
Resistance between PE terminal and the housing in the area of the DIN rail mounting bracket. |
| **Output over-voltage protection** | typ. 58.5Vdc
max. 60Vdc
In case of an internal defect, a redundant circuit limits the maximum output voltage. The output shuts down and performs three restart attempts. If the failure continues, the output shuts down. Cycle input power to reset. |
| **Class of protection** | I
According to IEC 61140
A PE (Protective Earth) connection is required |
| **Degree of protection** | IP 20
According to EN/IEC 60529 |
| **Over-temperature protection** | Included
Output shut-down with automatic restart.
Temperature sensors are installed on critical components inside the unit and turn the unit off in safety critical situations, which can happen e.g. when ambient temperature is too high, ventilation is obstructed or the derating requirements are not followed. There is no correlation between the operating temperature and turn-off temperature since this is dependent on input voltage, load and installation methods. |
| **Input transient protection** | MOV (Metal Oxide Varistor)
For protection values see chapter 15 (EMC). |
| **Internal input fuse** | Included
Not user replaceable slow-blow high-braking capacity fuse |
| **Touch current (leakage current)** | typ. 0.10mA / 0.27mA
At 100Vac, 50Hz, TN-, TT-mains / IT-mains
typ. 0.13mA / 0.38mA
At 120Vac, 60Hz, TN-, TT-mains / IT-mains
typ. 0.20mA / 0.60mA
At 230Vac, 50Hz, TN-, TT-mains / IT-mains
max. 0.13mA / 0.35mA
At 110Vac, 50Hz, TN-, TT-mains / IT-mains
max. 0.17mA / 0.51mA
At 132Vac, 60Hz, TN-, TT-mains / IT-mains
max. 0.27mA / 0.81mA
At 264Vac, 50Hz, TN-, TT-mains / IT-mains |

Jun. 2023 / Rev. 1.5 DS-CPS.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
18. **Dielectric Strength**

The output voltage is floating and has no ohmic connection to the ground. The output is insulated to the input by a double or reinforced insulation. Type and routine tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2s up and 2s down). Connect all input-terminals together as well as all output poles before conducting the test. When testing, set the cut-off current settings to the value in the table below.

We recommend that either the + pole or the – pole shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or cannot be switched off when unnoticed earth faults occur.

Fig. 18-1 Dielectric strength

<table>
<thead>
<tr>
<th>Type test</th>
<th>60s</th>
<th>2500Vac</th>
<th>3000Vac</th>
<th>1000Vac</th>
<th>500Vac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine test</td>
<td>5s</td>
<td>2500Vac</td>
<td>2500Vac</td>
<td>500Vac</td>
<td>500Vac</td>
</tr>
<tr>
<td>Field test</td>
<td>5s</td>
<td>2000Vac</td>
<td>2000Vac</td>
<td>500Vac</td>
<td>500Vac</td>
</tr>
<tr>
<td>Field test cut-off current settings</td>
<td>> 10mA</td>
<td>> 10mA</td>
<td>> 20mA</td>
<td>> 1mA</td>
<td></td>
</tr>
</tbody>
</table>

B*) When testing input to DC-OK ensure that the maximal voltage between DC-OK and the output is not exceeded (column D). We recommend connecting DC-OK pins and the output pins together when performing the test.

Jun. 2023 / Rev. 1.5 DS-CP5.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.

www.pulspower.com Phone +49 89 9278 0 Germany
<table>
<thead>
<tr>
<th>Certificate / Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61010-2-201</td>
<td>CB Report</td>
</tr>
<tr>
<td>UL 61010-2-201</td>
<td>UL Certificate</td>
</tr>
<tr>
<td>IEC 62368</td>
<td>CB Report</td>
</tr>
<tr>
<td>ATEX (only CP5.481)</td>
<td>Agency Certificate (Bureau Veritas)</td>
</tr>
<tr>
<td>IECEx (only CP5.481)</td>
<td>IECEx Certificate</td>
</tr>
<tr>
<td>Class I Div 2 (only CP5.481)</td>
<td>UL Certificate</td>
</tr>
<tr>
<td>IEC 61558-2-16</td>
<td>Test Certificate</td>
</tr>
<tr>
<td>VDMA 24364</td>
<td>LABS Paint Wetting Impairment Substances Test (or LABS-Test)</td>
</tr>
</tbody>
</table>

Approved, Fulfilled or Tested Standards

- Electrical Equipment for Measurement, Control and Laboratory Use - Particular requirements for control equipment
- Listed equipment for category NMTR - Electrical Equipment for Measurement, Control and Laboratory Use - Particular requirements for control equipment
- Audio/video, information and communication technology equipment - Safety requirements
- Equipment protection by type of protection "e" and "n"
- Equipment protection by type of protection: "ec" and "nC"
- Listed equipment for category NRAD - Listed equipment Industrial Control Equipment for Use in Hazardous Locations
- Test Certificate
- Safety of transformers, reactors, power supply units and similar products for supply voltages up to 1100 V
- Particular requirements and tests for switch mode power supply units and transformers for switch mode power supply units
- Safety of transformers, reactors, power supply units and similar products for supply voltages up to 1100 V
- Particular requirements and tests for switch mode power supply units
- Paint Wetting Impairment Substances Test (or LABS-Test)
- Tested for Zone 2 and test class C1 according to VDMA 24364-C1-L/W for solvents and water-based paints

Jun. 2023 / Rev. 1.5 DS-CP5.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.

www.pulspower.com Phone +49 89 9278 0 Germany
20. Regulatory Product Compliance

EU Declaration of Conformity

- The CE mark indicates conformance with the
 - EMC directive
 - Low-voltage directive
 - RoHS directive

REACH Regulation (EU)

- Manufacturer’s Declaration
- EU regulation regarding the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) fulfilled.

WEEE Regulation

- Manufacturer’s Declaration
- EU Regulation on Waste Electrical and Electronic Equipment
- Registered as business to business (B2B) products.
- EU Regulation 2012/19/EU

CCC

- CCC Certificate
- China Compulsory Certification (CNCA-C23-01:2019)
- Certificate for devices made in Suzhou/China (PULS Electronics): 20211223031114434
- Certificate for devices made in Chomutov/Czech Republic (PULS investiční): 20211223031114444
- CCC-Ex

UKCA

- UKCA Declaration of Conformity
- Trade conformity assessment for England, Scotland and Wales
- The UKCA mark indicates conformity with the UK Statutory Instruments
- 2016 No.1091,
- 2016 No.1107,
- 2012 No.3032

Jun. 2023 / Rev. 1.5 DS-CP5.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
21. PHYSICAL DIMENSIONS AND WEIGHT

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>32mm</td>
</tr>
<tr>
<td>Height</td>
<td>124mm</td>
</tr>
<tr>
<td>Depth</td>
<td>102mm</td>
</tr>
</tbody>
</table>

The DIN rail depth must be added to the unit depth to calculate the total required installation depth.

- **Weight**: 440g
- **DIN rail**: Use 35mm DIN rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm.
- **Installation clearances**: See chapter 2
- **Penetration protection**: Small parts like screws, nuts, etc. with a diameter larger than 3.5mm

Fig. 21-1
Front view
CPS.481

Fig. 21-2
Front view
CPS.481-S1-C1

Fig. 21-3
Side view

Jun. 2023 / Rev. 1.5 DS-CP5.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
22. ACCESSORIES

22.1. ZM10.WALL - WALL/PANEL MOUNT BRACKET

This bracket is used to mount the devices on a wall/panel without utilizing a DIN rail. The bracket can be mounted without detaching the DIN rail brackets.

![Isometric view Fig. 22-1](image1)
![Isometric view Fig. 22-2](image2)
![Isometric view Fig. 22-3](image3)

![Wall/panel mounting, front view Fig. 22-4](image4)
![Hole pattern for wall mounting Fig. 22-5](image5)
![Wall/panel mounting, side view Fig. 22-6](image6)
22.2. **YR2.DIODE - REDUNDANCY MODULE**

The YR2.DIODE is a dual redundancy module, which can be used to build 1+1 or N+1 redundant systems.
The device is equipped with two 10A nominal input channels, which are individually decoupled by utilizing diode technology. The output can be loaded with a nominal 20A continuous current.
The device does not require an additional auxiliary voltage and is self-powered even in case of a short circuit across the output.
For a safe and vibration resistant wiring, the device is equipped with time saving quick connect spring clamp terminals.
The unit is very narrow and only requires 32mm width on the DIN rail.
See chapter 23.5 for wiring information.

22.3. **UF20.481 BUFFER MODULE**

The UF20.481 buffer module is a supplementary device for DC 48V power supplies. It delivers power to bridge typical mains failures or extends the hold-up time after the AC power is turned off.
When the power supply provides a sufficient voltage, the buffer module stores energy in the integrated electrolytic capacitors. When the mains voltage is lost, the stored energy is released to the DC-bus in a regulated process.
The buffer module can be added in parallel to the load circuit at any given point and does not require any control wiring.
One buffer module can deliver 20A additional current and can be added in parallel to increase the output ampacity or the hold-up time.
23. **APPLICATION NOTES**

23.1. **PEAK CURRENT CAPABILITY**

The unit can deliver peak currents (up to several milliseconds) which are higher than the specified short term currents. This helps to start current demanding loads. Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady-state current and usually exceeds the nominal output current. The same situation applies when starting a capacitive load.

The peak current capability also ensures the safe operation of subsequent circuit breakers of load circuits. The load branches are often individually protected with circuit breakers or fuses. In case of a short or an overload in one branch circuit, the fuse or circuit breaker need a certain amount of over-current to open in a timely manner. This avoids voltage loss in adjacent circuits.

The extra current (peak current) is supplied by the power converter and the built-in large sized output capacitors of the power supply. The capacitors get discharged during such an event, which causes a voltage dip on the output. The following three examples show typical voltage dips for resistive loads:

![Fig. 23-1 5A peak current for 50ms, typ. (2x the nominal current)](image1)

![Fig. 23-2 12.5A peak current for 5ms, typ. (5x the nominal current)](image2)

![Fig. 23-3 7.5A peak current for 12ms, typ. (3x the nominal current)](image3)

Please note: The DC-OK relay triggers when the voltage dips more than 10% for longer than 1ms.

<table>
<thead>
<tr>
<th>Peak current voltage dips</th>
<th>Typically from 48V to 32V</th>
<th>At 5A for 50ms and resistive load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typically from 48V to 41V</td>
<td>At 12.5A for 2ms and resistive load</td>
</tr>
<tr>
<td></td>
<td>Typically from 48V to 34V</td>
<td>At 12.5A for 5ms and resistive load</td>
</tr>
</tbody>
</table>

Jun. 2023 / Rev. 1.5 DS-CP5.481-EN All parameters are typical values specified at 230Vac, 50Hz input voltage, 48V, 2.5A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
23.2. CHARGING OF BATTERIES

The power supply can be used to charge lead-acid or maintenance free batteries. Four 12V SLA or VRLA batteries are needed in series connection.

Instructions for charging batteries:

a) Use only matched batteries when putting 12V types in series.
b) Ensure that the ambient temperature of the power supply stays below 40°C for mains voltage of AC 120V or higher and 35°C for a mains voltage of AC 100V.
c) Use a 6A circuit breaker or a blocking diode between the power supply and the battery.
d) Ensure that the output current of the power supply is below the allowed charging current of the battery.
e) The return current to the power supply is typically 12mA. This return current can discharge the battery when the power supply is switched off except in case a blocking diode is utilized.
f) Set the output voltage, measured at no load and at the battery end of the cable, very precisely to the end-of-charge voltage. The voltage should be set to 55.6V at 10°C, 55.0V at 20°C, 54.3V at 30°C and 53.6V at 40°C ambient temperature.

23.3. SERIES OPERATION

Devices of the same type can be connected in series for higher output voltages. It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc. Voltages with a potential above 60Vdc must be installed with a protection against touching.

Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals.

Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other. Do not use power supplies in series in mounting orientations other than the standard mounting orientation.

Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple devices.

23.4. PARALLEL USE TO INCREASE OUTPUT POWER

Devices can be paralleled to increase the output power. The output voltage shall be adjusted to the same value (±100mV) with the same load conditions on all devices, or the devices can be left with the factory settings.

The ambient temperature is not allowed to exceed +40°C.

If more than three devices are connected in parallel, a fuse or circuit breaker with a rating of 6A is required on each output. Alternatively, a diode or redundancy module can also be utilized.

Energize all devices at the same time. It also might be necessary to cycle the input power (turn-off for at least five seconds), if the output was in overload or short circuits and the required output current is higher than the current of one unit.

Keep an installation clearance of 15mm (left / right) between two devices and avoid installing devices on top of each other. Do not use devices in parallel in mounting orientations other than the standard mounting orientation or in any other condition where a reduction of the output current is required (e.g. altitude).

Pay attention that leakage current, EMI, inrush current will increase when using multiple devices.
23.5. **Parallel Use for Redundancy**

Please note that there is a variant with built-in redundancy available in the CP5 series. Check CP5.481-R3 units.

1+1 Redundancy:
Devices can be paralleled for redundancy to gain higher system availability. Redundant systems require a certain amount of extra power to support the load in case one device fails. The simplest way is to put two devices in parallel.

This is called a 1+1 redundancy. In case one device fails, the other one is automatically able to support the load current without any interruption. It is essential to use a redundancy module to decouple devices from each other. This prevents that the defective unit becomes a load for the other device and the output voltage cannot be maintained any more.

1+1 redundancy allows ambient temperatures up to +70°C.

Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple devices.

Recommendations for building redundant power systems:
- Use separate input fuses for each device.
- Use separate mains systems for each device whenever it is possible.
- Monitor the individual devices. Therefore, use the DC-OK signal of the device.
- It is desirable to set the output voltages of all devices to the same value (± 100mV) or leave it at the factory setting.

N+1 Redundancy:

Redundant systems for a higher power demand are usually built in a N+1 method. E.g. four devices, each rated for 2.5A are paralleled to build a 7.5A redundant system.

Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple devices.

Keep an installation clearance of 15mm (left / right) between two devices and avoid installing the devices on top of each other.

Do not use devices in parallel in mounting orientations other than the standard mounting orientation or in any other condition, where a reduction of the output current is required.

For N+1 redundancy the ambient temperature is not allowed to exceed +40°C.

Wiring examples:

![1+1 Redundant configuration for 2.5A load current with a dual redundancy module](image1)

![N+1 Redundant configuration for 7.5A load current with multiple power supplies and redundancy modules](image2)
23.6. **Operation on Two Phases**

The power supply can also be used on two-phases of a three-phase-system. Such a phase-to-phase connection is allowed as long as the supplying voltage is below 240V±10%.

Ensure that the wire, which is connected to the N-terminal, is appropriately fused.

The maximum allowed voltage between a Phase and the PE must be below 300Vac.

![Diagram of power supply connection]

23.7. **Use in a Tightly Sealed Enclosure**

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. In such situations, the inside temperature defines the ambient temperature for the power supply.

The following measurement results can be used as a reference to estimate the temperature rise inside the enclosure.

The power supply is placed in the middle of the box, no other heat producing items are inside the box.

The temperature sensor inside the box is placed in the middle of the right side of the power supply with a distance of 1cm.

The following measurement results can be used as a reference to estimate the temperature rise inside the enclosure.

<table>
<thead>
<tr>
<th></th>
<th>Case A</th>
<th>Case B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure size</td>
<td>110x180x165mm Rittal Typ IP66 Box PK 9516 100, plastic</td>
<td>110x180x165mm Rittal Typ IP66 Box PK 9516 100, plastic</td>
</tr>
<tr>
<td>Input voltage</td>
<td>230Vac</td>
<td>230Vac</td>
</tr>
<tr>
<td>Load</td>
<td>48V, 2A; (=80%)</td>
<td>48V, 2.5A; (=100%)</td>
</tr>
<tr>
<td>Temperature inside the box</td>
<td>39.1°C</td>
<td>40.5°C</td>
</tr>
<tr>
<td>Temperature outside the box</td>
<td>25.8°C</td>
<td>25.4°C</td>
</tr>
<tr>
<td>Temperature rise</td>
<td>13.3K</td>
<td>15.1K</td>
</tr>
</tbody>
</table>
23.8. MOUNTING ORIENTATIONS

Mounting orientations other than input terminals on the bottom and output on the top require a reduction in continuous output power or a limitation in the maximum allowed ambient temperature.

The listed lifetime and MTBF values from this datasheet apply only for the standard mounting orientation.

The following curves give an indication for allowed output currents for altitudes up to 2000m.